1.3按行展开

余子式

∣ 1 1 0 3 1 1 1 1 2 2 3 4 5 5 6 6 ∣ 余 子 项 M 3 , 2 = ∣ 1 0 3 1 1 1 5 6 6 ∣ \begin{vmatrix} 1 & 1 & 0 & 3 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 4 \\ 5 & 5 & 6 & 6 \end{vmatrix} 余子项M_{3,2} = \begin{vmatrix} 1 & 0 & 3 \\ 1 & 1 & 1 \\ 5 & 6 & 6 \end{vmatrix} 1125112501363146M3,2=115016316

选一个元素,去掉所在列所在行,剩余的子集还是个行列式

代数余子式

∣ 1 1 0 3 1 1 1 1 2 2 3 4 5 5 6 6 ∣ 代 数 余 子 项 A 3 , 2 = ( − 1 ) 3 + 2 ∣ 1 0 3 1 1 1 5 6 6 ∣ \begin{vmatrix} 1 & 1 & 0 & 3 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 4 \\ 5 & 5 & 6 & 6 \end{vmatrix} 代数余子项A_{3,2} = (-1)^{3+2} \begin{vmatrix} 1 & 0 & 3 \\ 1 & 1 & 1 \\ 5 & 6 & 6 \end{vmatrix} 1125112501363146A3,2=(1)3+2115016316


定理1(按某行(列)展开)

D = a i , 1 A i , 1 + a i , 2 + ⋯ + a i , n A i , n D = a_{i,1}A_{i,1} + a_{i,2} + \cdots + a_{i,n}A_{i,n} D=ai,1Ai,1+ai,2++ai,nAi,n 每一项与它自己的代数余子项相乘就是这个行列式的值

D = a 1 , j A 2 j + ⋯ + a n j A n j D = a_{1,j}A_{2j}+\cdots + a_{nj}A_{nj} D=a1,jA2j++anjAnj

作用:降阶;选择0多的行或者列展开

定理2(异乘变零)

某行元素与另一行元素的代数余子式乘积之积等于0

在这里插入图片描述

证明:
在这里插入图片描述

拉普拉斯定理

k阶子式:选取k行,选取k列交叉得到的k*k的行列式

在这里插入图片描述

拉普拉斯展开定理:

取定k行,由k行元素组成的所有的k阶子式与代数余子式乘积之和,等于行列式的值


行列式相乘

同阶,第一个的每一行乘以第二个的每一列放在对应的结果的行上

数余子式乘积之和,等于行列式的值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值