线性代数 01.03 行列式按行(列)展开

() 

 

na ij ijn1a ij .M ij . 
a ij M ij . 
a ij A ij =(1) i+j M ij  

例如,四阶行列式
D=∣ ∣ ∣ ∣ ∣ ∣ a 11 a 21 a 31 a 41  a 12 a 22 a 32 a 42  a 13 a 23 a 33 a 43  a 14 a 24 a 34 a 44  ∣ ∣ ∣ ∣ ∣ ∣  
a 32  
M 32 =∣ ∣ ∣ ∣ a 11 a 21 a 41  a 13 a 23 a 43  a 14 a 24 a 44  ∣ ∣ ∣ ∣  

A 32 =(1) 3+2 ∣ ∣ ∣ ∣ a 11 a 21 a 41  a 13 a 23 a 43  a 14 a 24 a 44  ∣ ∣ ∣ ∣ =∣ ∣ ∣ ∣ a 11 a 21 a 41  a 13 a 23 a 43  a 14 a 24 a 44  ∣ ∣ ∣ ∣ =M 32  

() 

:Dn,Dia ij ,,Da ij , 
D=a ij A ij  

:D=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 0a n1   a 1j a ij a nj   a 1n 0a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣  
a i ,a j  
D=(1) i1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 0a 11 a (i1)1 a (i+1)1 a n1   a ij a 1j a (i1)j a (i+1)j a nj   0a 1n a (i1)n a (i+1)n a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =(1) i1 (1) j1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a ij a 1j a (i1)j a (i+1)j a nj  0a 11 a (i1)1 a (i+1)1 a n1   0a 1(j1) a (i1)(j1) a (i+1)(j1) a n(j1)  0a 1(j+1) a (i1)(j+1) a (i+1)(j+1) a n(j+1)   0a 1n a (i1)n a (i+1)n a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =(1) i+j a ij M ij =a ij A ij  

1.(), 
D=a i1 A i1 +a i2 A i2 ++a in A in (i=1,2,,n) 
D=a 1j A 1j +a 2j A 2j ++a nj A nj (j=1,2,,n) 

证:设
D=∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a i1 a n1  a 12 a i2 a n2   a 1n a in a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ =∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a i1 +0++0a n1  a 12 0+a i2 +0++0a n2   a 1n 0++0+a in a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ =∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a i1 a n1  a 12 0a n2   a 1n 0a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ +∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 0a n1  a 12 a i2 a n2   a 1n 0a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ +∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 0a n1  a 12 0a n2   a 1n a in a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ =a i1 A i1 +a i2 A i2 ++a in A in (i=1,2,,n) 

类似地、若按列证明,可得
D=a 1j A 1j +a 2j A 2j ++a nj A nj (j=1,2,,n) 

例1.计算
D=∣ ∣ ∣ ∣ ∣ ∣ 3521 1105 1313 2413 ∣ ∣ ∣ ∣ ∣ ∣  

解:
D=∣ ∣ ∣ ∣ ∣ ∣ 51105 1105 1313 1100 ∣ ∣ ∣ ∣ ∣ ∣ =1×(1) 3+3 ∣ ∣ ∣ ∣ 5115 115 110 ∣ ∣ ∣ ∣ =∣ ∣ ∣ ∣ 565 125 100 ∣ ∣ ∣ ∣ =1×(1) 1+3 ∣ ∣ ∣ 65 25 ∣ ∣ ∣ =40 

例2.计算
D 2n =∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ac  a0c  ac 00 bd  b0d  bd ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣  

解:按第一行展开
D 2n =a∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ac0   ac  bd  bd 0d ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ +b(1) 2n+1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 0c ac  ac  bd   bd0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =adD 2(n1) bc(1) 2n1+1 D 2(n1) =(adbc)D 2(n1) D 2n =(adbc) n  

例3.证明范蒙得(Vandermonde)行列式
D n =∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1x 1 x 2 1 x n1 1  1x 2 x 2 2 x n1 2   1x n x 2 n x n1 n  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ni>j1 (x i x j ) 
证:用数学归纳法.因为
D 2 =∣ ∣ ∣ 1x 1  1x 2  ∣ ∣ ∣ =x 2 x 1 = 2i>j1 (x i x j ) 
n=2,(1). 
(1)n1Vandermonde 
D n1 =∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1x 1 x 2 1 x n2 1  1x 2 x 2 2 x n2 2   1x n x 2 n x n2 n  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ni>j2 (x i x j ) 

nVandermonde. 
D n =∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1000 1x 2 x 1 x 2 (x 2 x 1 )x n2 2 (x 2 x 1 ) 1x 3 x 1 x 3 (x 3 x 1 )x n2 3 (x 3 x 1 )  1x n x 1 x n (x n x 1 )x n2 n (x n x 1 ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =(x 2 x 1 )(x 3 x 1 )(x n x 1 )∣ ∣ ∣ ∣ ∣ ∣ ∣ 1x 2 x n2 2  1x 3 x n2 3   1x n x n2 n  ∣ ∣ ∣ ∣ ∣ ∣ ∣ =(x 2 x 1 )(x 3 x 1 )(x n x 1 ) ni>j2 (x i x j )= ni>j1 (x i x j ) 

例4.计算
D=∣ ∣ ∣ ∣ ∣ ∣ 122 2 2 3  133 2 3 3  144 2 4 3  155 2 5 3  ∣ ∣ ∣ ∣ ∣ ∣ =(32)(42)(52)(43)(53)(54)=12 

 

:()(). 
a i1 A j1 +a i2 A j2 ++a in A jn =0,ij, 
a 1i A 1j +a 2i A 2j ++a ni A nj =0,ij 
证:设
D=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a i1 a j1 a n1  a 12 a i2 a j2 a n2   a 1n a in a jn a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣  
把D按照第j行展开,有
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a i1 a j1 a n1  a 12 a i2 a j2 a n2   a 1n a in a jn a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =a j1 A j1 +a j2 A j2 ++a jn A jn  
a i1 ,a i2 ,,a in a j1 ,a j2 ,,a jn , 
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a i1 a i1 a n1  a 12 a i2 a i2 a n2   a 1n a in a in a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =a i1 A j1 +a i2 A j2 ++a in A jn  
0 
a i1 A j1 +a i2 A j2 ++a in A jn =0(ij) 
 
a 1i A 1j +a 2i A 2j ++a ni A nj =0,ij) 

综合定理1和推论有
 n k=1 a ki A kj =Dδ ij ={Di=j,0ij;  
 n k=1 a ik A jk =Dδ ij ={Di=j,0ij;  
δ ij ={1,i=j,0,ij.  

例5.已知行列式
D=∣ ∣ ∣ ∣ ∣ ∣ 1125 2134 3142 4153 ∣ ∣ ∣ ∣ ∣ ∣  
A 41 +A 42 +A 43 +A 44 ,A 41 ,A 42 ,A 43 ,A 44 ,D. 
解:
a 21 A 41 +a 22 A 42 +a 23 A 43 +a 24 A 44 =01×A 41 +1×A 42 +1×A 43 +1×A 44 =0A 41 +A 42 +A 43 +A 44 =0 

行列式主要研究的问题:
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ a 11 x 1 +a 12 x 2 ++a 1n x n =b 1 a 21 x 1 +a 22 x 2 ++a 2n x n =b 2 a n1 x 1 +a n2 x 2 ++a nn a n =b n   
D=∣ ∣ ∣ ∣ ∣ ∣ a 11 a 21 a n1  a 12 a 22 a n2   a 1n a 2n a nn  ∣ ∣ ∣ ∣ ∣ ∣ =? 
D0,? 
,x j =D j D (j=1,2,,n)? 

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值