【机器学习】均方误差根(RMSE:Root Mean Squared Error)

均方误差根(Root Mean Squared Error,RMSE)是机器学习和统计学中常用的误差度量指标,用于评估预测值与真实值之间的差异。它通常用于回归模型的评价,以衡量模型的预测精度。

RMSE的定义与公式

给定预测值 \hat{y}_i 和实际值 y_i,均方误差根的公式如下:

\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}

其中:

  • n 是数据点的数量。
  • \hat{y}_i 是模型的预测值。
  • y_i 是真实值。

RMSE的计算步骤

  1. 求误差:计算预测值
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值