均方误差根(Root Mean Squared Error,RMSE)是机器学习和统计学中常用的误差度量指标,用于评估预测值与真实值之间的差异。它通常用于回归模型的评价,以衡量模型的预测精度。
RMSE的定义与公式
给定预测值 和实际值
,均方误差根的公式如下:
其中:
- n 是数据点的数量。
是模型的预测值。
是真实值。
RMSE的计算步骤
- 求误差:计算预测值
均方误差根(Root Mean Squared Error,RMSE)是机器学习和统计学中常用的误差度量指标,用于评估预测值与真实值之间的差异。它通常用于回归模型的评价,以衡量模型的预测精度。
给定预测值 和实际值
,均方误差根的公式如下:
其中: