贝叶斯法则(Bayes Theorem)
贝叶斯法则是概率论中的一个基本定理,用于描述已知一个事件的条件概率如何更新另一个事件的概率。它是贝叶斯统计的核心,用于从数据中推断未知量。
贝叶斯法则的数学表达式为:
符号解释
- P(A∣B):事件 B 发生后,事件 A 发生的 条件概率。
- P(B∣A):事件 A 发生后,事件 B 发生的 条件概率。
- P(A):事件 A 的 先验概率(在观察到 B 之前的初始估计)。
- P(B):事件 B 的 边缘概率,是 B 的总概率,可通过公式计算:
贝叶斯法则是概率论中的一个基本定理,用于描述已知一个事件的条件概率如何更新另一个事件的概率。它是贝叶斯统计的核心,用于从数据中推断未知量。
贝叶斯法则的数学表达式为: