【漫话机器学习系列】014.贝叶斯法则(Bayes Theorem)

贝叶斯法则(Bayes Theorem)

贝叶斯法则是概率论中的一个基本定理,用于描述已知一个事件的条件概率如何更新另一个事件的概率。它是贝叶斯统计的核心,用于从数据中推断未知量。

贝叶斯法则的数学表达式为:

P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}


符号解释

  • P(A∣B):事件 B 发生后,事件 A 发生的 条件概率
  • P(B∣A):事件 A 发生后,事件 B 发生的 条件概率
  • P(A):事件 A 的 先验概率(在观察到 B 之前的初始估计)。
  • P(B):事件 B 的 边缘概率,是 B 的总概率,可通过公式计算:

                                                  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值