【漫话机器学习系列】021.类别特征(Categorical Feature)

类别特征(Categorical Feature)

类别特征(Categorical Feature)是指取值为有限的、不连续的类别或标签的数据特征。在机器学习和数据分析中,类别特征经常用于描述对象的分类属性,例如颜色、性别、职业等。


1. 类别特征的特点

  • 离散性:类别特征的值是离散的,不具有连续性。
  • 有限性:类别特征的取值范围通常是有限的,例如颜色(红、绿、蓝)。
  • 无序性:某些类别特征没有明确的大小顺序关系,例如职业类型。
  • 可能存在层级关系:某些类别特征可能具有内在顺序关系,例如学历(高中 < 本科 < 硕士)。

2. 类别特征的常见类型

  1. 标称变量(Nominal Variable)

    • 没有顺序关系的类别特征。
    • 例子:颜色(红、绿、蓝)、职业(医生、教师、工程师)。
  2. 有序变量(Ordinal Variable)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值