风格迁移(Style Transfer)
风格迁移是一种计算机视觉技术,可以将一张图像的内容和另一张图像的风格融合在一起,生成一张既保留原始内容,又带有目标风格的全新图像!这种方法常用于艺术创作、图像增强、甚至视频处理。
最经典的风格迁移方法基于 卷积神经网络(CNN),由 Gatys 等人 在 2015 年提出,他们证明了 CNN 的不同层能够分别捕捉图像的内容特征和风格特征。
让我带你一步步了解!
1. 核心思想
风格迁移的目标是将:
- 内容图像 C:保留其主要结构和对象信息
- 风格图像 S:提取其纹理、色彩、笔触等艺术风格
生成一个混合图像 G,使其:
- 内容接近 C
- 风格接近 S
这个过程的核心是优化一个目标图像,使其最小化以下损失函数
2. 损失函数
(1) 内容损失
- 使用 预训练的 VGG 网络,在特定层提取内容特征。
- 目标:让生成图像的特征图接近内容图的特征图。
内容损失通常使用均方误差(MSE):
:生成图像在第 l 层特征图的激活值
:内容图像在第 l 层特征图的激活值
(2) 风格损失
- 用 Gram 矩阵(特征图的自相关矩阵)表示风格特征。
- Gram 矩阵编码了特征图通道之间的相关性,反映了纹理信息。
风格损失也是 MSE,但基于 Gram 矩阵: