比值(Odds)详解 —— 理解概率中的另一种表达方式
一、什么是“比值”(Odds)?
在学习概率和统计,特别是在研究分类模型(如逻辑回归)或医学研究(病例对照研究)时,我们经常会遇到“比值”(Odds)这个概念。很多人对“概率”(Probability)比较熟悉,但对“比值”理解不够深入,甚至容易混淆。
其实,比值(Odds)和概率(Probability)是两种不同的表达方式,它们描述的都是某个事件发生的可能性,但视角不一样。
二、从图片内容理解比值的定义
这张图清晰地展示了比值的计算公式和含义:
比值(Odds)的计算公式是:
-
Pr(y):事件 y 发生的概率
-
Pr(¬y):事件 y 不发生的概率(即 1−Pr(y))
三、图片中的直观说明
“比值是事件发生的概率与未发生的概率的比率。”
也就是说,比值是用来衡量“事件发生”与“事件不发生”之间的相对可能性。
举例说明:
场景 | 概率 | 比值 |
---|---|---|
某事件发生的概率是0.75 | Pr(y)=0.75 ,Pr(¬y)=0.25 | Odds = 0.75 / 0.25 = 3 |
某事件发生的概率是0.5 | Pr(y)=0.5 ,Pr(¬y)=0.5 | Odds = 0.5 / 0.5 = 1 |
某事件发生的概率是0.25 | Pr(y)=0.25 ,Pr(¬y)=0.75 | Odds = 0.25 / 0.75 ≈ 0.33 |
四、举个直观的例子
例1:掷硬币
假设正面朝上的概率是 0.5,反面朝上的概率也是 0.5。
那么:
说明:发生和不发生的可能性一样,比值为 1。
例2:掷骰子,掷出 6 的概率
掷出 6 的概率是 1/6,没掷出 6 的概率是 5/6。
所以:
说明:掷出 6 的可能性远小于不掷出 6 的可能性。
例3:某种药物治愈率
结果 | 概率 |
---|---|
治愈 | 0.8 |
没治愈 | 0.2 |
计算比值:
说明:治愈的可能性是不治愈的 4 倍。
五、比值与概率的区别
概念 | 定义 | 取值范围 | 举例 |
---|---|---|---|
概率(Probability) | 事件发生的可能性 | 0 到 1 之间 | 70%的概率是0.7 |
比值(Odds) | 事件发生概率 与 未发生概率 的比率 | 0 到 ∞ | Odds=2表示发生是未发生的2倍可能 |
六、比值的实际意义
-
比值 = 1
→ 事件发生和不发生的可能性一样大 -
比值 > 1
→ 事件更可能发生 -
比值 < 1
→ 事件更可能不发生
七、比值与胜率(Win Odds)的关系
很多人在博彩、医学、机器学习、Logistic 回归中都会接触到比值。
-
在医学研究中:
-
OR(Odds Ratio,优势比) = 两组比值之比
-
-
在Logistic回归中:
-
预测结果是比值的对数(log-odds)
-
八、比值与概率的互相转换
由概率求比值 | 由比值求概率 |
---|---|
Odds = p / (1-p) | p = Odds / (1 + Odds) |
举个例子:
-
概率p=0.8 → 比值=0.8/0.2=4
-
比值=4 → 概率=4/(1+4)=0.8
九、总结
核心观点 | 内容 |
---|---|
比值的本质 | 衡量事件发生与不发生的“强度对比” |
和概率的区别 | 概率关注发生的绝对可能性;比值关注发生与不发生的相对可能性 |
应用场景 | 医学、博彩、机器学习、金融、风险评估 |
十、一句话记忆比值(Odds)
比值(Odds)= “发生的可能” ÷ “不发生的可能”