CUDA、显卡驱动和Tensorflow、Pytorch版本之间的对应关系

一、显卡驱动与CUDA版本对应关系

在这里插入图片描述

来源:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

二、CUDA与Linux内核以及GCC版本对应关系

  • CUDA8.0版本对应

在这里插入图片描述
来源:https://docs.nvidia.com/cuda/archive/8.0/cuda-installation-guide-linux/index.html

  • CUDA9.0版本对应

在这里插入图片描述
来源:https://docs.nvidia.com/cuda/archive/9.0/cuda-installation-guide-linux/index.html

  • CUDA9.1版本对应

在这里插入图片描述

  • CUDA9.2版本对应

在这里插入图片描述

  • CUDA10.0版本对应

在这里插入图片描述

  • CUDA10.1版本对应

在这里插入图片描述

  • CUDA10.2版本对应

在这里插入图片描述

  • CUDA11.0版本对应

在这里插入图片描述

来源:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

三、Tensorflow、Python、CUDA及CUDNN不同版本的对应关系

3.1 windows端

参考网址:https://tensorflow.google.cn/install/source_windows

  • Tensorflow CPU版本

在这里插入图片描述

  • Tensorflow GPU版本

在这里插入图片描述

3.2 linux端

参考网址:https://tensorflow.google.cn/install/source

  • Tensorflow CPU版本

在这里插入图片描述

  • Tensorflow GPU版本

在这里插入图片描述

3.3 MacOS端

参考网址:https://tensorflow.google.cn/install/source

  • Tensorflow CPU版本

在这里插入图片描述

  • Tensorflow GPU版本

在这里插入图片描述

四、Pytorch与CUDA版本对应关系

参考官网:https://pytorch.org/get-started/previous-versions/

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值