pytorch 实现神经网络

本文介绍了如何在PyTorch中使用torch.nn模块创建自定义的多层感知器模型,包括从Module类派生子类,定义构造函数和forward函数,以及线性变换和激活函数的应用。
摘要由CSDN通过智能技术生成

PyTorch 提供的基本张量存储及运算功能,就可以实现多种神经网络模型,但是这种实现方式不但难度高,而且容易出错。因此,PyTorch将常用的神经网络模型封装到了 torch.nn 包内,以而可以方便灵活地加以调用。

在PyTorch 中构建一个自定义神经网络模型非常简单,就是从torch.nn 中的Module 类派生一个子类,并实现构造函数和 forward 函数。其中,构造函数定义了模型所需的成员对象,如构成该模型的各层,并对其中的参数进行初始化等。而forward 函数用来实现该模块的前向过程,即对输人进行逐层的处理,从而得到最终的输出结果。下面以多层感知器模型为例,介绍如何自定义 一个神经网络模型,

import torch
from torch import nn
from torch.nn import functional as F

class MLP(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_class):
        super(MLP, self).__init__()
        # 线性变换:输入层->隐含层
        self.linear1 = nn.Linear(input_dim, hidden_dim)
        # 使用ReLU激活函数
        self.activate = F.relu
        # 线性变换:隐含层->输出层
        self.linear2 = nn.Linear(hidden_dim, num_class)

    def forward(self, inputs):
        hidden = self.linear1(inputs)
        activation = self.activate(hidden)
        outputs = self.linear2(activation)
        probs = F.softmax(outputs, dim=1) # 获得每个输入属于某一类别的概率
        return probs

mlp = MLP(input_dim=4, hidden_dim=5, num_class=2)
inputs = torch.rand(3, 4) # 输入形状为(3, 4)的张量,其中3表示有3个输入,4表示每个输入的维度
probs = mlp(inputs) # 自动调用forward函数
print(probs) # 输出3个输入对应输出的概率

输出

tensor([[0.4173, 0.5827],
        [0.4212, 0.5788],
        [0.4291, 0.5709]], grad_fn=<SoftmaxBackward0>)

以下是使用PyTorch实现神经网络分类器的基本步骤: 1. 准备数据集:首先需要准备好数据集,包括训练集、验证集和测试集。可以使用PyTorch内置的数据集,例如MNIST手写数字数据集。 2. 定义模型:定义神经网络模型,包括输入层、隐藏层和输出层。可以使用PyTorch内置的模型,如nn.Sequential(),也可以自定义模型。 3. 定义损失函数:选择适当的损失函数,例如交叉熵损失函数。 4. 定义优化器:选择适当的优化器,例如随机梯度下降(SGD)。 5. 训练模型:使用训练集训练模型,通过反向传播优化模型参数。 6. 验证模型:使用验证集验证模型的性能。 7. 测试模型:使用测试集测试模型的性能,计算模型的准确率、精度、召回率等指标。 下面是一个简单的PyTorch代码示例,实现对MNIST手写数字数据集的分类: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 准备数据集 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 验证模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 这段代码首先准备了MNIST数据集,并定义了一个名为Net的神经网络模型,包含两个卷积层、两个池化层和三个全连接层。接着定义了损失函数和优化器,并使用训练集对模型进行训练。最后使用测试集测试模型的性能,计算模型的准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值