1.传统的数据模式以整个实体数据读出,处理完成后,整体数据再写入。而在游戏行业,对同一数据的操作频繁性,使得传统处理方式更容易的暴露所在的瓶颈,所有的业务逻辑都压在数据库的负载上,导致可用性以及响应速度的下降。
为了解决这类问题,常规的做法就是在数据库之前防止一层缓存层,减少对同一数据的读取操作,以缓解对资源的竞争。这样处理之后,数据库的权重能力下降,因为缓存中的数据可能更新,那么数据库中的数据可能落后N个版本,要么直接放弃数据库中的数据,仅仅为一个持久化存在。那么这时,数据的核心转移到缓存层。缓存虽然高效但是可靠性并没有数据库那么高,而游戏玩家的数据敏感度又是非常高的,经常的数据回滚也就成为了家常便饭。这会使运营成本增加以及维护成本增加。
2.数据局部更新请求,游戏的逻辑往往是有众多关联的,在一个逻辑中可能修改涉及到数个表,为了防止某个操作失败,在数据库上的做法是采用事务方式进行。然后修改成功后,涉及到UI交互更新部分,又需要根据各个逻辑进行各个区别返回。
曾经我们尝试过一种做法,我们一次性返回所有数据,一颗巨大的用户信息树,包含着当前用户的所有信息,当客户端觉得自己需要返回什么数据的时候,从树中直接获取。为了减少数据传输量,我们在树返回上加了一些过滤规则,用于返回特定关心的数据。这样的返回模式,相对比较通用,没有了协议协商过程。UI需求的改变也相对独立。
看起来是完美的,但是这个对性能导致了极大的影响,这意味着每次请求,不管什么都得查出所有的东西,后来我们把树切小,分成几个部分再加上缓存。才能勉强支撑。</