《算法》递归回溯最简单的题目

这篇博客介绍了如何使用递归回溯算法在给定的二维数组中寻找路径,该路径上的元素之和在2到4之间。作者提供了一个C#代码示例,通过4连通的方式遍历数组,并使用栈来存储路径。代码从指定的起点开始,对每个相邻的元素进行检查,符合条件则继续搜索,最终输出所有满足条件的路径。
摘要由CSDN通过智能技术生成

1,2,2,3,4
9,8,0,1,5
3,6,1,1,2
3,3,4,4,5

例如一个二维数组,从任意一个点出发开始寻找出路径点总和大于等于2,小于等于4的路径集合,例如0-2 和 0-2-2满足条件。

递归回溯简单来说就是设置标记,向下递归,出来后还原标记和其他状态等,我这里做简单一点就只考虑4连通,8连通异曲同工而已。

直接上代码。

using System.Collections;
using System.Collections.Generic;
using System.Text;
using UnityEngine;

// 递归 回溯 标记
public class Dfs : MonoBehaviour
{
    public int[][] arr = new int[4][]
    {
       new int[5]{1,2,2,3,4},
       new int[5]{9,8,0,1,5},
       new int[5]{3,6,1,1,2},
       new int[5]{3,3,4,4,5},
    };
    public Vector2 begin = Vector2.zero;
    private List<List<int>> result = new List<List<int>>();
    private Stack<int> tmp = new Stack<int>();
    private int[][] dirty = new int[4][]
    {
        new int[5],
        new int[5],
        new int[5],
        new int[5],
    };
    // Start is called before the first frame update
    void Start()
    {
        // 从某个数开始寻找2,4总和之间的路径
        tmp.Clear();
        int row = (int)begin.x;
        int col = (int)begin.y;
        tmp.Push(arr[row][col]);
        dirty[row][col] = 1;
        dfs(row, col, ref arr[row][col]);
        if (result.Count > 0)
        {
            for (int i = 0; i < result.Count; i++)
            {
                StringBuilder sb = new StringBuilder();
                for (int j = 0; j < result[i].Count; j++)
                {
                    sb.Append(result[i][j] + " ");
                }
                Debug.LogError(sb.ToString());
            }
        }
    }

    private void dfs(int row, int col, ref int rNum)
    {
        // row-1 
        if (row - 1 >= 0 && dirty[row - 1][col] == 0)
        {
            if (rNum + arr[row - 1][col] > 4)
            {
            }
            else if (rNum + arr[row - 1][col] < 2)
            {
                tmp.Push(arr[row - 1][col]);
                rNum += arr[row - 1][col];
                dirty[row - 1][col] = 1;
                dfs(row - 1, col, ref rNum);
                rNum -= arr[row - 1][col];
                tmp.Pop();
                dirty[row - 1][col] = 0;
            }
            else
            {
                tmp.Push(arr[row - 1][col]);
                result.Add(StackToList(tmp));
                rNum += arr[row - 1][col];
                dirty[row - 1][col] = 1;
                dfs(row - 1, col, ref rNum);
                dirty[row - 1][col] = 0;
                rNum -= arr[row - 1][col];
                tmp.Pop();
            }
        }
        // row+1 
        if (row + 1 < 4 && dirty[row + 1][col] == 0)
        {
            if (rNum + arr[row + 1][col] > 4)
            {
            }
            else if (rNum + arr[row + 1][col] < 2)
            {
                tmp.Push(arr[row + 1][col]);
                rNum += arr[row + 1][col];
                dirty[row + 1][col] = 1;
                dfs(row + 1, col, ref rNum);
                dirty[row + 1][col] = 0;
                rNum -= arr[row + 1][col];
                tmp.Pop();
            }
            else
            {
                tmp.Push(arr[row + 1][col]);
                result.Add(StackToList(tmp));
                rNum += arr[row + 1][col];
                dirty[row + 1][col] = 1;
                dfs(row + 1, col, ref rNum);
                dirty[row + 1][col] = 0;
                rNum -= arr[row + 1][col];
                tmp.Pop();
            }
        }
        // col-1
        if (col - 1 >= 0&&dirty[row][col-1]==0)
        {
            if (rNum + arr[row][col - 1] > 4)
            {
            }
            else if (rNum + arr[row][col - 1] < 2)
            {
                tmp.Push(arr[row][col - 1]);
                rNum += arr[row][col - 1];
                dirty[row][col - 1] = 1;
                dfs(row, col - 1, ref rNum);
                dirty[row][col - 1] = 0;
                rNum -= arr[row][col - 1];
                tmp.Pop();
            }
            else
            {
                tmp.Push(arr[row][col - 1]);
                result.Add(StackToList(tmp));
                rNum += arr[row][col - 1];
                dirty[row][col - 1] = 1;
                dfs(row, col - 1, ref rNum);
                dirty[row][col - 1] = 0;
                rNum -= arr[row][col - 1];
                tmp.Pop();
            }
        }
        // col+1
        if (col + 1 < 5&&dirty[row][col+1]==0)
        {
            if (rNum + arr[row][col + 1] > 4)
            {
            }
            else if (rNum + arr[row][col + 1] < 2)
            {
                tmp.Push(arr[row][col + 1]);
                rNum += arr[row][col + 1];
                dirty[row][col + 1] = 1;
                dfs(row, col + 1, ref rNum);
                dirty[row][col + 1] = 0;
                rNum -= arr[row][col + 1];
                tmp.Pop();
            }
            else
            {
                tmp.Push(arr[row][col + 1]);
                result.Add(StackToList(tmp));
                rNum += arr[row][col + 1];
                dirty[row][col + 1] = 1;
                dfs(row, col + 1, ref rNum);
                dirty[row][col + 1] = 0;
                rNum -= arr[row][col + 1];
                tmp.Pop();
            }
        }
    }

    private List<int> StackToList(Stack<int> stack)
    {
        Stack<int> tmp = new Stack<int>();
        while (stack.Count > 0)
        {
            tmp.Push(stack.Pop());
        }
        List<int> list = new List<int>();
        while (tmp.Count > 0)
        {
            list.Add(tmp.Pop());
        }
        for (int i = 0; i < list.Count; i++)
        {
            stack.Push(list[i]);
        }
        return list;
    }
}

在这里插入图片描述

在这里插入图片描述

填入起始点,可以看到输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JustEasyCode

谢谢您

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值