知识图谱是一种用于表示和组织知识的结构化图形模型。它由实体、属性和关系组成,可以帮助我们更好地理解和利用知识。构建和融合知识图谱是一项重要的任务,它涉及从多个信息源中收集和整合知识,以建立一个全面和一致的知识库。本文将介绍构建和融合知识图谱的方法,并提供相应的源代码示例。
一、知识图谱构建方法
- 知识抽取:知识抽取是从非结构化或半结构化文本中提取结构化知识的过程。常用的知识抽取技术包括实体识别、关系抽取和事件抽取。下面是一个使用Python中的自然语言处理工具NLTK进行实体识别的示例代码:
import nltk
def extract_entities(text):
tokens = nltk.word_tokenize(text