Pytorch中net.eval与net.train

我发现在有些网络中会存在net.eval()与net.train(),但是有一些却没有。查阅了一些说法,现在记录一下。这两个函数只要适用于DropoutBatchNormalization的网络,会影响到训练过程中这两者的参数

net.train() 

这个一般出现在训练函数中,也就是出现于

def train():
	net.train()
	...

运用net.train()时,训练时每个min-batch时都会根据情况进行上述两个参数的相应调整,所有Batch Normalization的训练和测试时的操作不同。

net.eval()

这个一般出现在测试函数中,也就是出现于

def val():
	net.eval()
	...

运用net.eval()时,由于网络已经训练完毕,参数都是固定的,因此每个min-batch的均值和方差都是不变的,因此直接运用所有batch的均值和方差。
在没有涉及到BN与Dropout的网络,这两个函数存在对于网络性能的影响,好坏不定。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值