在AutoDL平台部署Streamlit服务

由于在服务器上部署ChatGLM3需要运行综合demo,并在本地电脑上访问,记录一下流程
1.首先是在AutoDL启动streamlit服务。AutoDL给的自定义服务端口为6066,所以设置一下address和port

streamlit run ChatGLM3/basic_demo/web_demo_streamlit.py model/chatglmMerge_1/ --server.address 127.0.0.1 --server.port 6006

2.在本地CMD上运行一下代码

ssh -CNg -L 6006:127.0.0.1:6006 root@connect.westc.gpuhub.com -p 39747

其中root@connect.westc.gpuhub.com39747分别是实例中SSH指令的访问地址与端口,请找到自己实例的ssh指令做相应替换6006:127.0.0.1:6006是指代理实例内6006端口到本地的6006端口。

之后直接访问 http://127.0.0.1:6006即可

<think>嗯,用户想了解在AutoDL部署RAGFlow。首先,我需要确认RAGFlow是什么。RAGFlow应该是结合了检索增强生成(RAG)和流程化处理的应用框架,可能用于构建智能问答系统或者文档处理工具。那AutoDL是一个云平台,提供GPU资源,适合部署深度学习应用。用户可能希望在这个平台上快速搭建RAGFlow环境。 接下来,我得考虑部署的步骤。通常,云平台部署需要环境配置、依赖安装、代码获取、配置调整、运行和测试。AutoDL可能提供预置的镜像,比如PyTorch环境,这可以节省时间。需要检查RAGFlow的官方文档,看看有没有具体的安装要求,比如Python版本、依赖库等。 然后,用户可能需要安装Docker,因为很多应用推荐容器化部署。不过,如果RAGFlow本身可以直接通过pip安装,那步骤会更简单。但假设需要Docker,就得在AutoDL实例中安装Docker,并拉取相关镜像。但AutoDL的实例可能已经安装了Docker,需要确认。 数据准备部分,用户可能需要挂载数据集到指定目录,或者配置外部存储。比如,在AutoDL中,数据通常放在/root/autodl-tmp目录下,这样避免系统盘空间不足。需要提示用户注意数据路径的配置。 配置调整方面,RAGFlow可能有配置文件,需要修改端口、模型路径、数据库连接等。例如,如果使用HTTP服务,可能需要开放7860端口,并在AutoDL中创建映射,以便外部访问。 运行过程中,可能遇到依赖冲突,比如CUDA版本不匹配,或者缺少某些系统库。这时候需要根据错误信息,逐一解决。例如,安装ffmpeg或其他依赖项。 测试部分,用户可能需要使用curl或浏览器访问服务,验证是否正常。如果部署失败,查看日志是关键,比如docker logs或者直接运行时的输出。 另外,用户可能关心成本优化,比如选择按量计费还是预付费,实例类型的选择,以及停止实例以避免不必要的费用。需要提醒用户这些注意事项。 最后,用户可能遇到问题,需要提供常见问题的解决方法,比如端口不通、依赖缺失、显存不足等。需要给出具体的解决思路,比如调整batch size,监控显存使用情况。 总结下来,步骤应该是:准备环境、获取代码、安装依赖、配置调整、运行和测试,同时注意数据路径和成本管理。需要确保每个步骤都清晰,并且考虑到可能的错误点,提供解决方案。</think>以下是在AutoDL平台部署RAGFlow的分步指南: --- ### 一、部署前准备 1. **环境选择** - 选配GPU实例:推荐至少16GB显存(如RTX 3090/A10) - 镜像选择:Ubuntu 20.04 + PyTorch 2.0 + CUDA 11.8 - 硬盘空间:建议50GB+(数据集和模型缓存需额外空间) 2. **基础配置验证** ```bash # 连接实例后验证环境 nvidia-smi # 确认GPU识别 python -c "import torch; print(torch.cuda.is_available())" # 应输出True ``` --- ### 二、正式部署流程 #### 步骤1:获取代码 ```bash git clone https://github.com/infiniflow/ragflow.git cd ragflow ``` #### 步骤2:安装依赖 ```bash # 安装系统依赖 sudo apt update && sudo apt install -y libssl-dev ffmpeg # 安装Python依赖 pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu118 ``` #### 步骤3:配置文件调整 修改`config.yaml`关键参数: ```yaml model: cache_dir: /root/autodl-tmp/models # 指向数据盘 server: port: 7860 # AutoDL端口映射需一致 database: path: /root/autodl-tmp/ragflow.db ``` #### 步骤4:启动服务 ```bash # 启动API服务(推荐使用nohup) nohup python src/api_server.py > server.log 2>&1 & # 启动Web UI nohup streamlit run webui.py --server.port 8501 > ui.log 2>&1 & ``` --- ### 三、端口映射配置 1. AutoDL控制台操作: - 找到实例的"自定义服务"功能 - 添加两个映射: - 7860 → API端口 - 8501 → Web UI端口 2. 获取访问链接: ```bash cat /etc/nginx/conf.d/cloud.conf | grep -E '7860|8501' ``` --- ### 四、验证部署 1. **API测试** ```bash curl -X POST "http://localhost:7860/api/v1/query" \ -H "Content-Type: application/json" \ -d '{"question": "什么是机器学习?"}' ``` 2. **Web访问** 通过控制台提供的**临时域名**访问Web界面 --- ### 五、实用技巧 1. **数据管理** - 将原始文档放在`/root/autodl-tmp/uploaded_files` - 使用`rsync`定期备份数据 2. **资源监控** ```bash watch -n 1 nvidia-smi # 实时显存监控 htop # CPU/内存监控 ``` --- ### 六、常见问题解决 | 问题现象 | 解决方案 | |---------|---------| | CUDA内存不足 | 减小`config.yaml`中的`batch_size`参数 | | 端口冲突 | 检查`lsof -i:[端口号]`后kill占用进程 | | 依赖版本冲突 | 使用`pip install --force-reinstall`指定版本 | --- ### 七、成本优化建议 1. 使用`AutoDL-余额提醒`功能设置阈值 2. 非调试时段暂停实例 3. 优先选用**按量计费**实例类型 部署完成后,建议通过`压力测试脚本`验证系统稳定性。完整日志可通过`tail -f server.log`实时查看。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值