概率论
这里是概率论专栏
陌雨’
Github:https://github.com/infinity-07
展开
-
随机变量的原点矩、中心距、变异系数
k 阶原点矩设 XXX 为随机变量, kkk 为正整数。如果 E(Xk)E(X^k)E(Xk) 存在,则称μk=E(Xk)\mu_k=E(X^k)μk=E(Xk)为 XXX 的 kkk 阶原点矩特别的,μ1\mu_1μ1 为 XXX 的数学期望k 阶中心距设 XXX 为随机变量, kkk 为正整数。如果 E(X−E(X))kE(X-E(X))^kE(X−E(X))k 存在,则称νk=E(X−E(X))k\nu_k=E(X-E(X))^kνk=E(X−E(X))k为 XXX 的 kkk原创 2021-05-28 23:43:31 · 2103 阅读 · 0 评论 -
中心极限定理
林德伯格–莱维中心极限定理设 {Xn}\{X_n\}{Xn} 是独立同分布的随机变量序列,且 E(Xi)=μE(X_i)=\muE(Xi)=μ,Var(Xi)=σ2>0Var(X_i)=\sigma^2>0Var(Xi)=σ2>0 存在,若记Yn∗=X1+X2+⋯+Xn−nμσnY^*_n=\frac{X_1+X_2+\cdots+X_n-n\mu}{\sigma\sqrt{n}}Yn∗=σnX1+X2+⋯+Xn−nμ则对任意实数 yyy,有limn→∞P(Yn原创 2021-05-14 10:14:07 · 1233 阅读 · 0 评论 -
大数定理
切比雪夫大数定理:设 {Xn}\{X_n\}{Xn} 为一列两两不相关的随机变量序列,若每个 XiX_iXi 的方差存在,且有共同的上界,即 Var(Xi)⩽c,i=1,2,⋯Var(X_i)\leqslant c,i=1,2,\cdotsVar(Xi)⩽c,i=1,2,⋯,则 {Xn}\{X_n\}{Xn} 服从大数定理,即对任意的 ε>0\varepsilon>0ε>0,成立:limn→∞P(∣1n∑i=1nXi−1n∑i=1nE(Xi)∣<ε)=1\lim_{n\原创 2021-05-14 09:47:41 · 797 阅读 · 0 评论 -
使用特征函数计算随机变量的数学期望和方差
特征函数的性质: 若 E(Xl)E(X^l)E(Xl) 存在,则 XXX 的特征函数 φ(t)\varphi(t)φ(t) 可 lll 次求导,且对 1⩽k⩽l1\leqslant k\leqslant l1⩽k⩽l 有φ(k)(0)=ikE(Xk)\varphi^{(k)}(0)={\rm i}^kE(X^k)φ(k)(0)=ikE(Xk)上式提供了一条求随机变量的各阶矩的途径,特别可用下式去求数学期望和方差E(X)=φ′(0)iE(X)=\frac{\varphi'(0)}{\rm i}E(X)=原创 2021-05-13 18:43:53 · 9134 阅读 · 0 评论 -
随机变量的特征函数的定义
设 XXX 是一个随机变量,称φ(t)=E(eitX),−∞<t<∞\varphi(t)=E(e^{itX}),-\infty<t<\inftyφ(t)=E(eitX),−∞<t<∞为 XXX 的 特征函数例:均匀分布 U(a,b) 因为密度函数为p(x)={1b−a,a<x<b0,其他p(x)=\left\{\begin{aligned}&\frac{1}{b-a},\quad a<x<b\\&0,\quad 其他原创 2021-05-13 18:28:35 · 1374 阅读 · 0 评论 -
施瓦茨不等式
施瓦茨不等式:对任意二维随机变量 (X,Y)(X,Y)(X,Y),若 XXX 与 YYY 的方差都存在,且记 σX2=Var(X),σY2=Var(Y)\sigma^2_X=Var(X),\sigma^2_Y=Var(Y)σX2=Var(X),σY2=Var(Y),则有[Cov(X,Y)]2⩽σX2σY2[Cov(X,Y)]^2\leqslant\sigma^2_X\sigma^2_Y[Cov(X,Y)]2⩽σX2σY2...原创 2021-05-13 09:58:28 · 2078 阅读 · 0 评论 -
切比雪夫不等式
设随机变量 XXX 的数学期望和方差都存在,则对任意常数 ε>0\varepsilon>0ε>0,有P(∣X−E(X)∣⩾ε)⩽Var(X)ε2P(|X-E(X)|\geqslant\varepsilon)\leqslant\frac{Var(X)}{\varepsilon^2}P(∣X−E(X)∣⩾ε)⩽ε2Var(X)或P(∣X−E(X)∣<ε)⩾1−Var(X)ε2P(|X-E(X)|<\varepsilon)\geqslant 1-\frac{Var(X)}{\原创 2021-05-13 09:50:41 · 245 阅读 · 0 评论 -
概率的加法公式
加法公式: 对任意两个事件 A,BA,BA,B,有P(A∪B)=P(A)+P(B)−P(AB)P(A\cup B)=P(A)+P(B)-P(AB)P(A∪B)=P(A)+P(B)−P(AB)推广:对任意 nnn 个事件 A1,A2,⋯ ,AnA_1,A_2,\cdots,A_nA1,A2,⋯,An 有P(∪i=1nAi)=∑i=1nP(Ai)−∑1⩽i<j⩽nP(AiAj)+∑1⩽i<j<k⩽nP(AiAjAk)+⋯+(−1)n−1P(A1A2⋯An)P\left(\math原创 2021-05-13 09:43:39 · 5173 阅读 · 0 评论 -
概率的公理化定义
设 Ω\OmegaΩ 为一个样本空间,F\mathcal{F}F 为 Ω\OmegaΩ 的某些子集组成的一个事件域。如果对任一事件 A∈FA\in\mathcal{F}A∈F,定义在 F\mathcal{F}F 上的一个实值函数 P(A)P(A)P(A) 满足:非负性公理 若 A∈FA\in\mathcal{F}A∈F,则 P(A)⩾0P(A)\geqslant0P(A)⩾0正则性公理 P(Ω)=1P(\Omega)=1P(Ω)=1可列可加性公理 若 A1,A2,⋯An,⋯A_1,A_2,\cdot原创 2021-05-12 23:35:47 · 1601 阅读 · 0 评论 -
对偶律(德摩根公式)
事件并的对立等于对立的交:A∪B‾=A‾∩B‾\overline{A\cup B}=\overline{A}\cap\overline{B}A∪B=A∩B事件交的对立等于对立的并:A∩B‾=A‾∪B‾\overline{A\cap B}=\overline{A}\cup\overline{B}A∩B=A∪B推广:∪i=1nAi‾=∪i=1nAi‾\overline{\mathop{\cup}\limits^n_{i=1}A_i}=\mathop{\cup}\limits_{i=1}^n\overl原创 2021-05-12 23:24:10 · 25832 阅读 · 4 评论 -
常用概率分布及其数学期望和方差
分布分布列 pkp_kpk 或分布密度 p(x)p(x)p(x)期望方差0−10-10−1 分布pk=pk(1−p)1−k,k=0,1p_k=p^k(1-p)^{1-k},\quad k=0,1pk=pk(1−p)1−k,k=0,1pppp(1−p)p(1-p)p(1−p)二项分布 b(n,p)b(n,p)b(n,p)pk=(nk)pk(1−p)n−k,k=0,1,⋯p_k=\binom{n}{k}p^k(1-p)^{n-k},\quad k=0,1,\cdotsp...原创 2021-04-02 20:40:57 · 5150 阅读 · 0 评论