
解析几何
文章平均质量分 69
陌雨’
Github:https://github.com/infinity-07
展开
-
向量函数具有固定模的充要条件
r(t) 与 r'(t) 垂直原创 2022-03-31 17:20:54 · 1087 阅读 · 0 评论 -
解析几何 | 吕子根 设三平行平面 $\pi_i:\ Ax+By+Cz+D_i=0\,(i=1,2,3),L,M,N$ 依次是平面 $\pi_1,\pi_2,\pi_3$ 上的任意点,求 $\tria
题目:设三平行平面 πi: Ax+By+Cz+Di=0 (i=1,2,3),L,M,N\pi_i:\ Ax+By+Cz+D_i=0\,(i=1,2,3),L,M,Nπi: Ax+By+Cz+Di=0(i=1,2,3),L,M,N 依次是平面 π1,π2,π3\pi_1,\pi_2,\pi_3π1,π2,π3 上的任意点,求 △LMN\triangle LMN△LMN 的重心的轨迹。参考答案:设 L(x1,y1,z1),M(x2,y2,z2),N(x3,y3,z3)L(x_原创 2021-11-11 23:35:30 · 562 阅读 · 0 评论 -
螺旋(曲)面方程
方程:x=ρcos(αθ)y=ρsin(αθ)z=θ\begin{aligned}x&=\rho\cos(\alpha\theta)\\y&=\rho\sin(\alpha\theta)\\z& = \theta\end{aligned}xyz=ρcos(αθ)=ρsin(αθ)=θ其中,θ,ρ\theta,\rhoθ,ρ 是参数,θ∈(−∞,+∞),ρ∈(−∞,+∞)\theta\in(-\infty,+\infty),\rho\in(-\infty,+\in.原创 2021-11-06 16:25:50 · 3382 阅读 · 0 评论 -
设P,Q,R是等轴双曲线上的任意三点,求证,三角形PQR的垂心H必在同一等轴双曲线上. | 解析几何 吕林根 课后习题
这个答案很靠谱,比你收到的其他垃圾答案都靠谱2021年10月29日16:42:54原创 2021-10-29 16:43:52 · 1556 阅读 · 0 评论 -
外旋轮线的参数方程
来自维基百科原创 2021-10-26 21:51:45 · 1707 阅读 · 0 评论