常见函数泰勒公式展开(清晰)

e x = ∑ n = 0 ∞ 1 n ! x n = 1 + x + 1 2 ! x 2 + ⋯ ∈ ( − ∞ , + ∞ ) sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯   , x ∈ ( − ∞ , + ∞ ) cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯   , x ∈ ( − ∞ , + ∞ ) ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − 1 2 x 2 + 1 3 x 3 + ⋯   , x ∈ ( − 1 , 1 ] 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + ⋯   , x ∈ ( − 1 , 1 ) 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + ⋯   , x ∈ ( − 1 , 1 ) ( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯   , x ∈ ( − 1 , 1 ) arctan ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 = x − 1 3 x 3 + 1 5 x 5 + ⋯ + x ∈ [ − 1 , 1 ] arcsin ⁡ x = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 = x + 1 6 x 3 + 3 40 x 5 + 5 112 x 7 + 35 1152 x 9 + ⋯ + , x ∈ ( − 1 , 1 ) tan ⁡ x = ∑ n = 1 ∞ B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + 62 2835 x 9 + 1382 155925 x 11 + 21844 6081075 x 13 + 929569 638512875 x 15 + ⋯   , x ∈ ( − π 2 , π 2 ) \begin{aligned} e^{x}&=\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}=1+x+\frac{1}{2 !} x^{2}+\cdots \in(-\infty,+\infty) \\ \sin x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}+\cdots, x \in(-\infty,+\infty) \\ \cos x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}+\cdots, x \in(-\infty,+\infty) \\ \ln (1+x)&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots, x \in(-1,1] \\ \frac{1}{1-x}&=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, x \in(-1,1) \\ \frac{1}{1+x}&=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, x \in(-1,1)\\ (1+x)^{\alpha}&=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots, x \in(-1,1) \\ \arctan x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+ x \in[-1,1] \\ \arcsin x&=\sum_{n=0}^{\infty} \frac{(2 n) !}{4^{n}(n !)^{2}(2 n+1)} x^{2n+1}=x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{5}{112} x^{7}+\frac{35}{1152} x^{9}+\cdots+, x \in(-1,1)\\ \tan x&=\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n) !} x^{2 n-1}=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\frac{62}{2835} x^{9}+\frac{1382}{155925} x^{11}+\frac{21844}{6081075} x^{13}+\frac{929569}{638512875} x^{15}+\cdots,x\in (-\frac{\pi}{2},\frac{\pi}{2}) \end{aligned} exsinxcosxln(1+x)1x11+x1(1+x)αarctanxarcsinxtanx=n=0n!1xn=1+x+2!1x2+(,+)=n=0(2n+1)!(1)nx2n+1=x3!1x3+5!1x5+,x(,+)=n=0(2n)!(1)nx2n=12!1x2+4!1x4+,x(,+)=n=0n+1(1)nxn+1=x21x2+31x3+,x(1,1]=n=0xn=1+x+x2+x3+,x(1,1)=n=0(1)nxn=1x+x2x3+,x(1,1)=1+n=1n!α(α1)(αn+1)xn=1+αx+2!α(α1)x2+,x(1,1)=n=02n+1(1)nx2n+1=x31x3+51x5++x[1,1]=n=04n(n!)2(2n+1)(2n)!x2n+1=x+61x3+403x5+1125x7+115235x9++,x(1,1)=n=1(2n)!B2n(4)n(14n)x2n1=x+31x3+152x5+31517x7+283562x9+1559251382x11+608107521844x13+638512875929569x15+,x(2π,2π)

Markdown 代码如下:

    $$\begin{aligned}
    e^{x}&=\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}=1+x+\frac{1}{2 !} x^{2}+\cdots \in(-\infty,+\infty) \\
    \sin x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}+\cdots, x \in(-\infty,+\infty) \\
    \cos x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}+\cdots, x \in(-\infty,+\infty) \\
    \ln (1+x)&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots, x \in(-1,1] \\
    \frac{1}{1-x}&=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, x \in(-1,1) \\
    \frac{1}{1+x}&=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, x \in(-1,1)\\
        (1+x)^{\alpha}&=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots, x \in(-1,1) \\
        \arctan x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+ x \in[-1,1] \\
        \arcsin x&=\sum_{n=0}^{\infty} \frac{(2 n) !}{4^{n}(n !)^{2}(2 n+1)} x^{2n+1}=x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{5}{112} x^{7}+\frac{35}{1152} x^{9}+\cdots+, x \in(-1,1)\\
        \tan x&=\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n) !} x^{2 n-1}=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\frac{62}{2835} x^{9}+\frac{1382}{155925} x^{11}+\frac{21844}{6081075} x^{13}+\frac{929569}{638512875} x^{15}+\cdots,x\in (-\frac{\pi}{2},\frac{\pi}{2})
    \end{aligned}$$


相关链接

微积分常用导数总结
常用等价无穷小的整理


其中 { B n } \{B_n\} {Bn} 为伯努利数, tan ⁡ x \tan x tanx 的展开方法可参考这篇文章
知乎:tan(x)的泰勒展开有通项公式吗?


2021年2月17日00:12:40


2021年5月9日11:34:16
增加了 tan ⁡ x \tan x% tanx 的泰勒展开


2024年8月16日 22点57分
增加了 markdown 代码

<think>好的,用户让我介绍一下“公式展开”,我需要先理解他们具体指的是什么。根据之前的对话历史,用户之前询问了一个SAP代码对应的数学公式,现在可能希望了解如何将类似的数学表达式进行展开或详细解释。 首先,要确定“公式展开”在数学中的常见含义。通常,这可能涉及代数表达式的展开,比如多项式乘法展开,或者是分解复杂公式为更简单的部分。例如,将$(a + b)^2$展开为$a^2 + 2ab + b^2$。此外,也可能涉及级数展开,如泰勒展开或傅里叶级数展开。 回顾用户之前的问题,他们提到了运筹学中的平衡条件,所以可能需要考虑与线性规划、约束条件相关的展开。但用户现在的请求更广泛,可能不限于之前的上下文,所以需要涵盖不同的展开类型。 接下来,我需要考虑用户可能的背景。他们可能是在学习数学或运筹学,需要了解公式展开的不同方法及应用场景。用户可能希望得到清晰的分类和例子,以便更好地理解和应用这些方法。 然后,我要确保回答结构清晰,分点说明不同类型的公式展开,每个类型给出定义、示例和应用场景。同时,需要符合之前系统级指令的要求,使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并且用中文回答。 还需要注意用户是否可能有更深层次的需求。比如,他们可能在解决某个具体问题,需要展开某个公式但不知道方法,或者想验证自己的展开是否正确。因此,在回答中提供常见错误和注意事项会有帮助,并邀请用户提供具体例子以便进一步解释。 最后,确保语言简洁明了,避免过于专业的术语,必要时用例子帮助理解。检查LaTeX语法是否正确,特别是之前用户提供的例子中的符号是否正确使用,比如集合符号、上下标等。 总结,回答应包括: 1. 公式展开的定义 2. 常见类型(代数、因式分解、级数、微积分、矩阵) 3. 每种类型的示例和应用场景 4. 注意事项和常见错误 5. 邀请用户提供具体例子进一步解释 这样结构化的回答能帮助用户全面理解公式展开,并根据需要深入某个特定类型。</think>以下是对**数学公式展开**的详细说明,分为概念解析、常见类型和应用场景三部分: --- ### 一、公式展开的定义 **公式展开**是将数学表达式从紧凑形式转换为更详细的展开形式的过程,目的是: - 揭示隐藏的运算逻辑 - 简化复杂结构的分析 - 为后续计算(如求导、积分)提供基础形式 --- ### 二、常见展开类型与示例 #### 1. **代数表达式展开** 将括号内的表达式通过分配律展开,常用于多项式运算: - **原始形式**: $$(a + b)^2$$ - **展开过程**: $$(a + b)^2 = a \cdot a + a \cdot b + b \cdot a + b \cdot b$$ - **简化结果**: $$a^2 + 2ab + b^2$$ **应用场景**:方程求解、多项式拟合、概率计算(如二项式分布) --- #### 2. **因式分解的逆过程** 将乘积形式转换为求和形式: - **原始形式**: $$(x + 1)(x - 2)$$ - **展开结果**: $$x^2 - 2x + x - 2 = x^2 - x - 2$$ **应用场景**:方程求根、函数图形分析 --- #### 3. **级数展开** 用无限项简单函数逼近复杂函数,典型代表为泰勒展开: - **原始函数**: $$\sin x \quad (x \text{ 单位为弧度})$$ - **泰勒展开式**: $$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$ **应用场景**:物理近似计算、信号处理、数值分析 --- #### 4. **微积分运算展开** 拆分复合函数的导数或积分: - **链式法则展开**: $$\frac{d}{dx} \sin(2x) = \cos(2x) \cdot \frac{d}{dx}(2x) = 2\cos(2x)$$ - **分部积分展开**: $$\int u \, dv = uv - \int v \, du$$ **应用场景**:动力学建模、优化问题 --- #### 5. **矩阵/向量运算展开** 将矩阵乘法分解为元素级操作: - **矩阵乘法**: $$C = AB \quad \Rightarrow \quad c_{ij} = \sum_{k=1}^n a_{ik}b_{kj}$$ - **向量内积**: $$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i$$ **应用场景**:机器学习、计算机图形学、经济模型 --- ### 三、注意事项与常见错误 | 问题类型 | 错误案例 | 修正方法 | |--------------------------|----------------------------------|----------------------------------| | **符号遗漏** | $(x+1)(x+2) \to x^2 + 3x$ | 检查中间项:$x^2 + 3x + 2$ | | **运算顺序错误** | $\sin(x + y) \to \sin x + \sin y$ | 使用和角公式:$\sin x \cos y + \cos x \sin y$ | | **级数截断不当** | 用 $e^x \approx 1 + x$ 计算 $x=2$ | 增加高阶项:$1 + x + \frac{x^2}{2}$ | --- 如果需要具体公式的展开演示,请提供原始表达式(例如:$\int e^{ax}\sin(bx) dx$ 或 $(a + b + c)^3$),我可以逐步展示操作过程!
评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值