常见函数泰勒公式展开(清晰)

e x = ∑ n = 0 ∞ 1 n ! x n = 1 + x + 1 2 ! x 2 + ⋯ ∈ ( − ∞ , + ∞ ) sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯   , x ∈ ( − ∞ , + ∞ ) cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯   , x ∈ ( − ∞ , + ∞ ) ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 x n + 1 = x − 1 2 x 2 + 1 3 x 3 + ⋯   , x ∈ ( − 1 , 1 ] 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + ⋯   , x ∈ ( − 1 , 1 ) 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + ⋯   , x ∈ ( − 1 , 1 ) ( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯   , x ∈ ( − 1 , 1 ) arctan ⁡ x = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 = x − 1 3 x 3 + 1 5 x 5 + ⋯ + x ∈ [ − 1 , 1 ] arcsin ⁡ x = ∑ n = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 = x + 1 6 x 3 + 3 40 x 5 + 5 112 x 7 + 35 1152 x 9 + ⋯ + , x ∈ ( − 1 , 1 ) tan ⁡ x = ∑ n = 1 ∞ B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + 62 2835 x 9 + 1382 155925 x 11 + 21844 6081075 x 13 + 929569 638512875 x 15 + ⋯   , x ∈ ( − π 2 , π 2 ) \begin{aligned} e^{x}&=\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}=1+x+\frac{1}{2 !} x^{2}+\cdots \in(-\infty,+\infty) \\ \sin x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}+\cdots, x \in(-\infty,+\infty) \\ \cos x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}+\cdots, x \in(-\infty,+\infty) \\ \ln (1+x)&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots, x \in(-1,1] \\ \frac{1}{1-x}&=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, x \in(-1,1) \\ \frac{1}{1+x}&=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, x \in(-1,1)\\ (1+x)^{\alpha}&=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots, x \in(-1,1) \\ \arctan x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+ x \in[-1,1] \\ \arcsin x&=\sum_{n=0}^{\infty} \frac{(2 n) !}{4^{n}(n !)^{2}(2 n+1)} x^{2n+1}=x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{5}{112} x^{7}+\frac{35}{1152} x^{9}+\cdots+, x \in(-1,1)\\ \tan x&=\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n) !} x^{2 n-1}=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\frac{62}{2835} x^{9}+\frac{1382}{155925} x^{11}+\frac{21844}{6081075} x^{13}+\frac{929569}{638512875} x^{15}+\cdots,x\in (-\frac{\pi}{2},\frac{\pi}{2}) \end{aligned} exsinxcosxln(1+x)1x11+x1(1+x)αarctanxarcsinxtanx=n=0n!1xn=1+x+2!1x2+(,+)=n=0(2n+1)!(1)nx2n+1=x3!1x3+5!1x5+,x(,+)=n=0(2n)!(1)nx2n=12!1x2+4!1x4+,x(,+)=n=0n+1(1)nxn+1=x21x2+31x3+,x(1,1]=n=0xn=1+x+x2+x3+,x(1,1)=n=0(1)nxn=1x+x2x3+,x(1,1)=1+n=1n!α(α1)(αn+1)xn=1+αx+2!α(α1)x2+,x(1,1)=n=02n+1(1)nx2n+1=x31x3+51x5++x[1,1]=n=04n(n!)2(2n+1)(2n)!x2n+1=x+61x3+403x5+1125x7+115235x9++,x(1,1)=n=1(2n)!B2n(4)n(14n)x2n1=x+31x3+152x5+31517x7+283562x9+1559251382x11+608107521844x13+638512875929569x15+,x(2π,2π)

Markdown 代码如下:

    $$\begin{aligned}
    e^{x}&=\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}=1+x+\frac{1}{2 !} x^{2}+\cdots \in(-\infty,+\infty) \\
    \sin x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}+\cdots, x \in(-\infty,+\infty) \\
    \cos x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}+\cdots, x \in(-\infty,+\infty) \\
    \ln (1+x)&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots, x \in(-1,1] \\
    \frac{1}{1-x}&=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, x \in(-1,1) \\
    \frac{1}{1+x}&=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, x \in(-1,1)\\
        (1+x)^{\alpha}&=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots, x \in(-1,1) \\
        \arctan x&=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+ x \in[-1,1] \\
        \arcsin x&=\sum_{n=0}^{\infty} \frac{(2 n) !}{4^{n}(n !)^{2}(2 n+1)} x^{2n+1}=x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{5}{112} x^{7}+\frac{35}{1152} x^{9}+\cdots+, x \in(-1,1)\\
        \tan x&=\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n) !} x^{2 n-1}=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\frac{62}{2835} x^{9}+\frac{1382}{155925} x^{11}+\frac{21844}{6081075} x^{13}+\frac{929569}{638512875} x^{15}+\cdots,x\in (-\frac{\pi}{2},\frac{\pi}{2})
    \end{aligned}$$


相关链接

微积分常用导数总结
常用等价无穷小的整理


其中 { B n } \{B_n\} {Bn} 为伯努利数, tan ⁡ x \tan x tanx 的展开方法可参考这篇文章
知乎:tan(x)的泰勒展开有通项公式吗?


2021年2月17日00:12:40


2021年5月9日11:34:16
增加了 tan ⁡ x \tan x% tanx 的泰勒展开


2024年8月16日 22点57分
增加了 markdown 代码

评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值