微积分 | 常用等价无穷小的整理 | 清晰

本文总结了当x趋近于0时,一些常见函数的极限行为,如正弦、正切、自然对数等,并给出了指数、对数、余弦等函数的近似表达式。此外,还探讨了泰勒公式在函数展开中的应用,是微积分学习者的实用参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

x → 0 x\to 0 x0

sin ⁡ x ∼ x tan ⁡ x ∼ x ln ⁡ ( 1 + x ) ∼ x e x − 1 ∼ x arcsin ⁡ x ∼ x arctan ⁡ x ∼ x log ⁡ a ( 1 + x ) ∼ x ln ⁡ a a x − 1 ∼ ln ⁡ a ⋅ x 1 − cos ⁡ x ∼ 1 2 x 2 ( 1 + x ) n − 1 ∼ n x \begin{array}{l} \sin x\sim x\\ \tan x\sim x\\ \ln (1+x)\sim x\\ e^x-1\sim x\\ \arcsin x\sim x\\ \arctan x\sim x\\ \log_a(1+x)\sim\frac{x}{\ln a}\\ a^x-1\sim\ln a\cdot x\\ 1-\cos x\sim \frac{1}{2}x^2\\ (1+x)^n-1\sim nx \end{array} sinxxtanxxln(1+x)xex1xarcsinxxarctanxxloga(1+x)lnaxax1lnax1cosx21x2(1+x)n1nx


相关链接

微积分常用导数总结
常见函数泰勒公式展开


2021年11月22日13:02:00

在这里插入图片描述


2022年12月20日21:44:10 修改了 a^x-1 的错误,增加了一个图


2024年7月1日17点31分修改了一些错误

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值