一个求整系数多项式的全部有理根的方法

定理


f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0 f(x)=anxn+an1xn1++a0
是一个整系数多项式,而 r s \frac{r}{s} sr 是它的一个有理根,其中 r , s r,s r,s 互素,那么必有 s ∣ a n , r ∣ a 0 . s|a_n,r|a_0. san,ra0. 特别的,如果 f ( x ) f(x) f(x) 的首项系数 a n = 1 a_n=1 an=1 那么 f ( x ) f(x) f(x) 的有理根都是整根,而且是 a 0 a_0 a0 的因子。

证明

因为 r s \frac{r}{s} sr f ( x ) f(x) f(x) 的一个有理根.因此在有理数域上
( x − r s ) ∣ f ( x ) . (x-\frac{r}{s})|f(x). (xsr)f(x).
从而
( s x − r ) ∣ f ( x ) (sx-r)|f(x) (sxr)f(x)
因为 r , s r,s r,s 互素,所以 s x − r sx-r sxr 是一个本原多项式.
f ( x ) = ( s x − r ) ( b n − 1 x n − 1 + ⋯ + b 0 ) f(x)=(sx-r)(b_{n-1}x^{n-1}+\cdots+b_0) f(x)=(sxr)(bn1xn1++b0)
式中 b n − 1 , ⋯   , b 0 b_{n-1},\cdots,b_0 bn1,,b0 都是整数. 比较两边系数,即得
a n = s b n − 1 , a 0 = − r b 0 a_n=sb_{n-1},a_0=-rb_0 an=sbn1,a0=rb0
因此
s ∣ a n , r ∣ a 0 s|a_n,r|a_0 san,ra0


2021年7月1日23:09:21 有改动

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值