每日一题/007/级数/设a_n=1-1/2+1/3- ... + (-1)^(n-1)*1/n,求 lim_{n\to\infty}a_n

题目:

a n = 1 − 1 2 + 1 3 − ⋯ + ( − 1 ) ( n − 1 ) 1 n a_n=1-\frac{1}{2}+\frac{1}{3}- \cdots + (-1)^{(n-1)}\frac{1}{n} an=121+31+(1)(n1)n1

lim ⁡ n → ∞ a n \lim_{n\to\infty}a_n nliman


参考答案:


解法一:
根据泰勒公式:

ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n + 1 1 n x n + ⋯ (1) \begin{aligned} \ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\cdots+(-1)^{n+1}\frac{1}{n}x^n+\cdots\end{aligned}\tag{1} ln(1+x)=x21x2+31x3+(1)n+1n1xn+(1)

令 (1) 中 x = 1 x=1 x=1,即可得到

ln ⁡ 2 = 1 − 1 2 + 1 3 − ⋯ + ( − 1 ) n + 1 1 n + ⋯ = lim ⁡ n → ∞ a n \begin{aligned}\ln2&=1-\frac{1}{2}+\frac{1}{3}-\cdots+(-1)^{n+1}\frac{1}{n}+\cdots\\ &=\lim_{n\to\infty}a_n\end{aligned} ln2=121+31+(1)n+1n1+=nliman

注意,在 (1) 中,是把 ln ⁡ ( 1 + x ) \ln(1+x) ln(1+x) 展开了无穷次项。相当于已经取了极限,只不过这里的极限含义是用省略号表示而不是极限号表示


解法二:

注意:在取极限前, a n a_n an 为有限项求和

不妨假设 n = 2 k n=2k n=2k(对于 n n n 为奇数项的情况可用同样的方法得到,此处假设 n = 2 k n=2k n=2k 是为了使表述简洁)

a n = 1 − 1 2 + 1 3 − ⋯ + ( − 1 ) ( n − 1 ) 1 n a n  有  2 k  项 a_n=1-\frac{1}{2}+\frac{1}{3}- \cdots + (-1)^{(n-1)}\frac{1}{n}\qquad\text{$a_n$ 有 $2k$ 项} an=121+31+(1)(n1)n1an  2k 

b n = 1 2 + 1 4 + ⋯ + 1 n b n  有  k  项 b_n=\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{n}\qquad\text{$b_n$ 有 $k$ 项} bn=21+41++n1bn  k 

那么

c n = a n + 2 b n = 1 + 1 2 + 1 3 + 1 4 + ⋯ + 1 n c n  有  2 k  项 \begin{aligned} c_n&=a_n+2b_n\\ &=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}\qquad\text{$c_n$ 有 $2k$ 项}\end{aligned} cn=an+2bn=1+21+31+41++n1cn  2k 

2 b n = 1 + 1 2 + 1 3 + 1 4 + ⋯ + 1 k 2 b n  有  k  项 2b_n=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{k}\qquad\text{$2b_n$ 有 $k$ 项} 2bn=1+21+31+41++k12bn  k 

所以

lim ⁡ n → ∞ c n − ln ⁡ 2 k = γ lim ⁡ n → ∞ 2 b n − ln ⁡ k = γ \begin{aligned} \lim_{n\to\infty}c_n-\ln 2k=\gamma\\ \lim_{n\to\infty}2b_n-\ln k=\gamma\\ \end{aligned} nlimcnln2k=γnlim2bnlnk=γ

这里的 γ \gamma γ 指欧拉常数

lim ⁡ n → ∞ a n = lim ⁡ n → ∞ c n − 2 b n = lim ⁡ n → ∞ ( c n − ln ⁡ 2 k ) − lim ⁡ n → ∞ ( 2 b n − ln ⁡ 2 k ) = lim ⁡ n → ∞ ( c n − ln ⁡ 2 k ) − lim ⁡ n → ∞ ( 2 b n − ln ⁡ k − ln ⁡ 2 ) = γ − γ + ln ⁡ 2 = ln ⁡ 2 \begin{aligned} \lim_{n\to\infty}a_n=&\lim_{n\to\infty}c_n-2b_n\\ &=\lim_{n\to\infty}(c_n-\ln 2k)-\lim_{n\to\infty}(2b_n-\ln 2k)\\ &=\lim_{n\to\infty}(c_n-\ln 2k)-\lim_{n\to\infty}(2b_n-\ln k-\ln 2)\\ &=\gamma-\gamma+\ln 2\\ &=\ln 2 \end{aligned} nliman=nlimcn2bn=nlim(cnln2k)nlim(2bnln2k)=nlim(cnln2k)nlim(2bnlnkln2)=γγ+ln2=ln2


2021年1月3日17:41:16

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值