设 X X X 是一个随机变量,称
φ ( t ) = E ( e i t X ) , − ∞ < t < ∞ \varphi(t)=E(e^{itX}),-\infty<t<\infty φ(t)=E(eitX),−∞<t<∞
为 X X X 的 特征函数
例:
均匀分布 U(a,b) 因为密度函数为
p ( x ) = { 1 b − a , a < x < b 0 , 其 他 p(x)=\left\{\begin{aligned} &\frac{1}{b-a},\quad a<x<b\\ &0,\quad 其他\end{aligned}\right. p(x)=⎩⎨⎧b−a1,a<x<b0,其他
所以其特征函数为
φ ( t ) = ∫ a b e i t x b − a d x = e i b t − e i a t i t ( b − a ) \varphi(t)=\int_a^b\frac{e^{itx}}{b-a}{\rm d}x=\frac{e^{{\rm i}bt}-e^{{\rm i}at}}{{\rm i}t(b-a)} φ(t)=∫abb−aeitxdx=it(b−a)eibt−eiat