k 阶原点矩
设 X X X 为随机变量, k k k 为正整数。如果 E ( X k ) E(X^k) E(Xk) 存在,则称
μ k = E ( X k ) \mu_k=E(X^k) μk=E(Xk)
为 X X X 的 k k k 阶原点矩
特别的, μ 1 \mu_1 μ1 为 X X X 的数学期望
k 阶中心距
设 X X X 为随机变量, k k k 为正整数。如果 E ( X − E ( X ) ) k E(X-E(X))^k E(X−E(X))k 存在,则称
ν k = E ( X − E ( X ) ) k \nu_k=E(X-E(X))^k νk=E(X−E(X))k
为 X X X 的 k k k 阶中心距
特别的, ν 2 \nu_2 ν2 为 X X X 的方差
变异系数
设随机变量 X X X 的二阶距存在,则称比值
C ν ( X ) = ( V a r ( X ) E ( X ) = σ ( X ) E ( X ) C_\nu(X)=\frac{\sqrt{(Var(X)}}{E(X)}=\frac{\sigma(X)}{E(X)} Cν(X)=E(X)(Var(X)=E(X)σ(X)
为 X X X 的变异系数