随机变量的原点矩、中心距、变异系数

本文介绍了随机变量的统计特性,包括k阶原点矩、k阶中心距和变异系数的概念。原点矩μk是随机变量X的k次幂的期望,特别地,μ1代表数学期望;中心距νk是X减去其期望后的k次幂的期望,ν2即为方差;变异系数Cν(X)是方差与期望的比值,衡量随机变量波动的程度。这些概念在概率论和统计学中有着广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

k 阶原点矩

X X X 为随机变量, k k k 为正整数。如果 E ( X k ) E(X^k) E(Xk) 存在,则称

μ k = E ( X k ) \mu_k=E(X^k) μk=E(Xk)

X X X k k k 阶原点矩

特别的, μ 1 \mu_1 μ1 X X X 的数学期望

k 阶中心距

X X X 为随机变量, k k k 为正整数。如果 E ( X − E ( X ) ) k E(X-E(X))^k E(XE(X))k 存在,则称

ν k = E ( X − E ( X ) ) k \nu_k=E(X-E(X))^k νk=E(XE(X))k

X X X k k k 阶中心距

特别的, ν 2 \nu_2 ν2 X X X 的方差

变异系数

设随机变量 X X X 的二阶距存在,则称比值

C ν ( X ) = ( V a r ( X ) E ( X ) = σ ( X ) E ( X ) C_\nu(X)=\frac{\sqrt{(Var(X)}}{E(X)}=\frac{\sigma(X)}{E(X)} Cν(X)=E(X)(Var(X) =E(X)σ(X)

X X X变异系数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值