ResNet

在这里插入图片描述看明白这张图就理解resnet了
可见F(x) + x会存在两种不匹配的情况:
channel和size
要利用conv进行改变

注意看代码中in_planes != self.expansion*planes这个条件
以bottleneck作为例子:
在这里插入图片描述
输入是256dim,经过了block第一层1*1卷积之后变成了64dim,因此in_channel = 4 * out_channel
PS:包括明确一点,这个判定只是在block开始的时候,内部不进行判定(这里构造block是作为整体获得的)

if stride != 1 or in_planes != self.expansion*planes:
        # stride进行尺寸变换(变小)
        # self.expansion进行通道变化(变宽)
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

在这里插入图片描述注意看注释,仅仅conv3-1, 4-1, 5-1存在下采样图像尺寸减半
conv2-1 stride = 1 下采样依靠的maxpooling

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值