线性代数学习笔记10-3:奇异值分解SVD(从四个子空间角度理解)、瘦奇异值分解(thin SVD)

本文详细阐述了SVD(奇异值分解)通过四个子空间——行空间、零空间、列空间和左零空间来理解线性变换。它展示了标准正交基的选择,以及如何通过SVD实现数据的降维和特征值分析。特别强调了瘦SVD的结构,以及SVD与矩阵运算的理论统一。
摘要由CSDN通过智能技术生成

从四个子空间角度理解SVD

A = U m × m Σ m × n V n × n H \mathbf {A =U_{m \times m}\Sigma_{m \times n}V_{n \times n}^H} A=Um×mΣm×nVn×nH
在这里插入图片描述
A \mathbf {A} A视为线性变换,并将整个 R n \mathbf R^n Rn空间拆分为两部分,即 A \mathbf {A} A行空间(维数 r r r)和零空间(维数 n − r n-r nr,行空间的正交补):

  1. A \mathbf {A} A行空间中,存在第一部分标准正交基 v i ( i = 1 , 2 , . . . , r ) \mathbf{v}_{i}(i=1,2,...,r) vi(i=1,2,...,r)
    A \mathbf A A对应的线性变换将行空间中的 v i \mathbf{v}_{i} vi映射为 A \mathbf A A列空间中的一个非零向量 σ i u i = A v i \sigma_i\mathbf u_i=\mathbf A\mathbf{v}_{i} σiui=Avi(视为对 A \mathbf A A的列向量的线性组合);
    A [ v 1 v 2 ⋯ v r ] = [ σ 1 u 1 σ 2 u 2 ⋯ σ r u r ] = [ u 1 u 2 ⋯ u r ] [ σ 1 σ 2 ⋱ σ r ] \begin{aligned}\boldsymbol{A}\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r}\end{array}\right] &=\left[\begin{array}{lllll} \sigma_{1} \mathbf{u}_{1} & \sigma_{2} \mathbf{u}_{2} & \cdots & \sigma_{r} \mathbf{u}_{r} \end{array}\right] \\ &=\left[\begin{array}{lllll} \mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{r} \end{array}\right]\left[\begin{array}{llll} \sigma_{1} & & & \\ & \sigma_{2} & & \\ & & \ddots & \\ & & & \sigma_{r} \end{array}\right] \end{aligned} A[v1v2vr]=[σ1u1σ2u2σrur]=[u1u2ur] σ1σ2σr
    此即 U m × n V ^ n × r = U ^ m × r Σ ^ r × r \mathbf U_{m\times n}\hat{\mathbf V}_{n\times r}=\hat{\mathbf U}_{m\times r}\hat{\mathbf \Sigma}_{r\times r} Um×nV^n×r=U^m×rΣ^r×r,对应下图中的红色边框部分

注意, A \mathbf A A行空间中的向量 x \mathbf x x列空间中的向量 A x \mathbf A\mathbf x Ax映射,为一一映射
也就是说对于行空间中的向量 x ≠ y \mathbf x\neq\mathbf y x=y,则必有列空间中的向量 A x ≠ A y \mathbf A\mathbf x\neq\mathbf A\mathbf y Ax=Ay
证明:
反证法:对于行空间的向量 x ≠ y \mathbf x\neq\mathbf y x=y,假设有 A x = A y \mathbf A\mathbf x=\mathbf A\mathbf y Ax=Ay
A ( x − y ) = 0 \mathbf A(\mathbf x-\mathbf y)=\mathbf 0 A(xy)=0,这就是说,向量 ( x − y ) (\mathbf x-\mathbf y) (xy)在零空间中;
另一方面,向量 ( x − y ) (\mathbf x-\mathbf y) (xy)一定在行空间中(两个行空间中的向量的线性组合)
向量 ( x − y ) (\mathbf x-\mathbf y) (xy)不可能既在行空间中,又在零空间中,因此假设不成立

在这里插入图片描述

  1. A \mathbf A A零空间中,有第二部分标准正交基 v i ( i = r + 1 , r + 2 , . . . , n ) \mathbf v_i(i=r+1,r+2,...,n) vi(i=r+1,r+2,...,n)
    A \mathbf A A对应的线性变换将 v i \mathbf v_i vi映射为零向量,满足 A v i = 0 \mathbf {A}\mathbf v_i=0 Avi=0
    体现在 Σ m × n \boldsymbol{\Sigma}_{m\times n} Σm×n中,就是其右下角的0元素,对应上图蓝色边框部分

上面是从 A = U Σ V H ⇒ A V = U Σ \mathbf {A =U\Sigma V^H}\Rightarrow \mathbf {A V =U\Sigma} A=VHAV=的角度出发;
A H = V Σ H U H ⇒ A H U = V Σ H \mathbf {A^H =V\Sigma^HU^H}\Rightarrow \mathbf {A^HU =V\Sigma^H} AH=VΣHUHAHU=VΣH的角度同理可知: U \mathbf U U给出了 A H \mathbf A^H AH的行空间和零空间的标准正交基

结论

我们在 A \boldsymbol{A} A四个子空间中,寻找了两组合适的基:

  • 第一组是 C n × n \mathbb C^{n\times n} Cn×n空间中的标准正交基,由两部分构成:
    v i ( i = 1 , 2 , . . . , r ) \mathbf{v}_{i}(i=1,2,...,r) vi(i=1,2,...,r)行空间中的 r r r个标准正交基
    v i ( i = r + 1 , r + 2 , . . . , n ) \mathbf{v}_{i}(i=r+1,r+2,...,n) vi(i=r+1,r+2,...,n)为零空间中的标准正交基
  • 第二组是 C m × m \mathbb C^{m\times m} Cm×m空间中的标准正交基,由两部分构成:
    u i ( i = 1 , 2 , . . . , r ) \mathbf{u}_{i}(i=1,2,...,r) ui(i=1,2,...,r)列空间中的 r r r个标标准正交基
    u i ( i = r + 1 , r + 2 , . . . , m ) \mathbf{u}_{i}(i=r+1,r+2,...,m) ui(i=r+1,r+2,...,m)为左零空间中的标准正交基

瘦奇异值分解(thin SVD)

V m \mathbb V^m Vm空间的一组正交基是 U = [ U r U m − r ] = [ u 1 ⋯ u r   ∣   u r + 1 ⋯ u m ] U=\begin{bmatrix} U_r&U_{m-r} \end{bmatrix}=\begin{bmatrix} \mathbf{u}_1&\cdots&\mathbf{u}_r~\vert~\mathbf{u}_{r+1}&\cdots&\mathbf{u}_m \end{bmatrix} U=[UrUmr]=[u1ur  ur+1um]
V n \mathbb V^n Vn空间的一组正交基是 V = [ V r V n − r ] = [ v 1 ⋯ v r   ∣   v r + 1 ⋯ v n ] V=\begin{bmatrix} V_r&V_{n-r} \end{bmatrix}=\begin{bmatrix} \mathbf{v}_1&\cdots&\mathbf{v}_r~\vert~\mathbf{v}_{r+1}&\cdots&\mathbf{v}_n \end{bmatrix} V=[VrVnr]=[v1vr  vr+1vn]
对应了四个子空间:
A v i = σ i u i ,     i = 1 , … , r A v i = 0 i ,     i = r + 1 , … , n A H u i = σ i v i ,     i = 1 , … , r A H u i = 0 ,     i = r + 1 , … , m , \begin{aligned} A\mathbf{v}_i&=\sigma_i\mathbf{u}_i,~~~i=1,\ldots,r\\ A\mathbf{v}_i&=\mathbf{0}_i,~~~i=r+1,\ldots,n\\ A^H\mathbf{u}_i&=\sigma_i\mathbf{v}_i,~~~i=1,\ldots,r\\ A^H\mathbf{u}_i&=\mathbf{0},~~~i=r+1,\ldots,m,\end{aligned} AviAviAHuiAHui=σiui,   i=1,,r=0i,   i=r+1,,n=σivi,   i=1,,r=0,   i=r+1,,m,

实际上其中的 n − r n-r nr v i \mathbf{v}_i vi m − r m-r mr u i \mathbf{u}_i ui是“多余”的
因为只要求它们被映射为零向量(而不要求有 A v i = σ i u i \mathbf A\mathbf{v}_i=\sigma_i\mathbf{u}_i Avi=σiui的一一映射关系),或者说线性变换 A \mathbf A A并未对这些向量进行实质性的操作( A \mathbf A A将多余的 v i \mathbf{v}_i vi降维压缩为零向量,而 u i \mathbf{u}_i ui则是那些线性变换后的新空间中与变换本身无关的多余维度)

从关注线性变换 A \mathbf A A的本质的角度,我们完全可以忽略零空间和左零空间,只关注行空间和列空间之间的一一映射
那么,有 A A A瘦奇异值分解(thin SVD)如下 A = [ U r U m − r ] [ D 0 0 0 ] [ V r H V n − r H ] = U r D V r H = [ u 1 ⋯ u r ] [ σ 1 ⋱ σ r ] [ v 1 H ⋮ v r H ] = σ 1 u 1 v 1 H + ⋯ + σ r u r v r H , \begin{aligned} A&=\begin{bmatrix} U_r&U_{m-r} \end{bmatrix}\begin{bmatrix} D&0\\ 0&0 \end{bmatrix}\begin{bmatrix} V_r^H\\ V_{n-r}^H \end{bmatrix}=U_rDV_r^H\\ &=\begin{bmatrix} \mathbf{u}_1&\cdots&\mathbf{u}_r \end{bmatrix}\begin{bmatrix} \sigma_1&&\\ &\ddots&\\ &&\sigma_r \end{bmatrix}\begin{bmatrix} \mathbf{v}_1^H\\ \vdots\\ \mathbf{v}_r^H \end{bmatrix}\\ &=\sigma_1\mathbf{u}_1\mathbf{v}_1^H+\cdots+\sigma_r\mathbf{u}_r\mathbf{v}_r^H,\end{aligned} A=[UrUmr][D000][VrHVnrH]=UrDVrH=[u1ur] σ1σr v1HvrH =σ1u1v1H++σrurvrH,

理论的统一

前面笔记10-1说过,SVD( A = U Σ V T \boldsymbol{A} =\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} A=UΣVT)中, Σ \boldsymbol{\Sigma} Σ奇异值 σ ≥ 0 \sigma\geq 0 σ0

  • A \boldsymbol{A} A为可逆矩阵 r = n r=n r=n,没有0特征值,
    A T A \boldsymbol{A}^{T} \boldsymbol{A} ATA A A T \boldsymbol{A}\boldsymbol{A}^{T} AAT特征值全为正,为正定矩阵,对应 A \boldsymbol{A} A奇异值全为正;
  • A \boldsymbol{A} A为不可逆矩阵 r < n r<n r<n,有0特征值,
    A T A \boldsymbol{A}^{T} \boldsymbol{A} ATA A A T \boldsymbol{A}\boldsymbol{A}^{T} AAT特征值正数和0,为半正定矩阵,对应 A \boldsymbol{A} A奇异值为正数和0

因此有:
A \boldsymbol{A} A不可逆( r < n r<n r<n    ⟺    \iff
Σ \boldsymbol{\Sigma} Σ对角元为正数和0(存在奇异值为0    ⟺    \iff
A \boldsymbol{A} A存在零空间(维度 n − r > 0 n-r>0 nr>0),零空间中的一部分向量 v i \mathbf v_i vi被线性变换 A \boldsymbol{A} A映射为零向量( A v i = 0 \boldsymbol{A}\mathbf v_i=0 Avi=0    ⟺    \iff
A x = 0 \bold{Ax=0} Ax=0有非零解    ⟺    \iff
A \boldsymbol{A} A的列向量组线性相关

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值