线性代数——奇异值分解(SVD)

本文详细介绍了奇异值分解(SVD)的概念,包括实对称矩阵分解、奇异值分解的原理和直观感受。通过实例展示了如何用SVD进行图片压缩,解释了其在数据压缩中的作用。此外,还探讨了SVD与主成分分析(PCA)的区别,指出SVD在稳定性上的优势。
摘要由CSDN通过智能技术生成


在前几篇文章中介绍了: 主成分分析矩阵知识,本文介绍矩阵压缩的另一种方法SVD,这个方法相对于主成分分析更灵活,尤其是在推荐系统中非常常见。

实对称矩阵分解

在介绍奇异值分解前,先来复习一下实对称矩阵分解:
矩阵知识我们知道,对于实对称矩阵 A A A必能找到正交矩阵 Q Q Q,使得 A = Q T Λ Q A=Q^T\Lambda Q A=QTΛQ,其中 Λ \Lambda Λ是对角线上为特征值的对角阵,Q是特征向量组成的正交矩阵。

A = Q T Λ Q = [ x 1 x 2 . . . x n ] [ λ 1 0 . . . 0 0 λ 2 . . . 0 . . . 0 0 . . . λ n ] [ x 1 T x 2 T . . . x n T ] = λ 1 x 1 x 1 T + λ 2 x 2 x 2 T + . . . + λ n x n x n T A=Q^T\Lambda Q=\begin{bmatrix} x_1 & x_2 & ...&x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & ... & 0 \\ 0 & \lambda_2 & ... & 0\\ & & ...&\\0&0&...&\lambda_n \end{bmatrix} \begin{bmatrix} x_1^T \\ x_2^T \\ ...\\x_n^T \end{bmatrix}=\lambda_1x_1x_1^T+\lambda_2x_2x_2^T+...+\lambda_nx_nx_n^T A=QTΛQ=[x1x2...xn]λ1000λ20............00λnx1Tx2T...xnT=λ1x1x1T+λ2x2x2T+...+λnxnxnT

其中 x i x_i x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值