「机器学习算法」多维缩放(MDS)

多维缩放(MDS)是一种有效的降维方法,旨在缓解高维数据的样本稀疏和距离计算问题。通过构建低维空间中样本间的欧式距离与原始空间相等的目标,MDS转换数据到新维度。算法涉及计算样本间距离矩阵,并找到合适的新空间表示。
摘要由CSDN通过智能技术生成

简介

   多维缩放(Mutiple Dimensional Scaling)是一种经典的降维方法,可以缓解在高维情形下出现的数据样本稀疏和距离计算困难等问题,即“维数灾难”.

算法原理及推导

    假定 m 个样本在原始空间的距离矩阵为 DRm×m ,其第 i 行和第 j 列的元素 distij 为样本 xi xj 的距离。我们的目标是获得样本在 d 维空间的表示 ZRd×m dd ,且任意两个样本在 d 维空间中的欧式距离等于原始空间中的距离,即 ||zizj||=distij .
    令 B=ZTZRm×m ,其中 B 为降维后样本的内积矩阵, bij=zTizj ,则有

dist2ij=||zizj||2=||zi||2+||zj||2+2zTizj=bii+bjj2bij,


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值