功能连接图谱

博客介绍了Yeo图谱、Brainnetome atlas、Gordon图谱等常用脑图谱的发表时间、引用次数及相关文章信息,还给出了Brainnetome atlas官网。同时提出图谱如何使用的问题,并提及神经影像的图论分析工具GRTNA。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Yeo的图谱,2011年发表,引用有2400+次
Thomas Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … & Fischl, B. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of neurophysiology, 106(3), 1125-1165.
Brainnetome atlas,2016年发表的文章,包含两个半球共246个子区域,引用290+次
官网:http://atlas.brainnetome.org/index.html
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., … & Fox, P. T. (2016). The human brainnetome atlas: a new brain atlas based on connectional architecture. Cerebral cortex, 26(8), 3508-3526.

另外一个,2014年发布,引用390+次的
Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. (2014). Generation and evaluation of a cortical area parcellation from resting-state correlations. Cerebral cortex, 26(1), 288-303.

问题:图谱要怎么用?

GRETNA: a graph theoretical network analysis toolbox for imaging connectomics
GRTNA,神经影像的图论分析

### 大脑图谱及其在IT应用与神经网络模型中的关联 大脑图谱是一种用于描述和分析人类或其他动物大脑结构和功能的技术体系。它通过整合多种数据源(如解剖学、生理学以及基因表达数据),构建出高分辨率的大脑三维地图,从而帮助理解复杂的神经系统工作机制。 #### 什么是大脑图谱? 大脑图谱旨在全面描绘大脑的物理连接性和功能性活动模式。这种技术不仅限于静态解剖结构的研究,还扩展到动态的功能映射上。现代大脑图谱通常依赖先进的成像技术和计算方法,例如磁共振成像 (MRI) 和正电子发射断层扫描 (PET)[^1]。这些工具能够提供关于大脑不同区域之间相互作用的关键信息。 #### IT 技术在大脑图谱中的应用 信息技术对于推进大脑图谱研究至关重要。具体来说: - **大数据处理**:由于大脑图谱涉及海量的数据采集与存储,因此需要高效的数据库管理系统和支持大规模数据分析的能力。 - **机器学习与人工智能**:利用神经网络特别是深度学习算法可以从复杂的大脑影像数据集中自动提取有意义的特征[^3]。这种方法显著提高了自动化程度并减少了人为误差的可能性。 - **可视化软件开发**:为了使科研人员更直观地理解和探索所得结果,专门设计的交互式图形界面必不可少。 #### 神经网络模型的作用 神经网络作为一种强大的建模工具,在模拟真实世界现象方面表现出色。当涉及到大脑图谱时,它们被用来模仿某些特定类型的神经元行为或者整体皮质回路特性。以下是几个主要应用场景: - 使用卷积神经网络(CNNs) 进行图像分类任务可以帮助识别不同的脑区边界; - 循环神经网络(RNNs),尤其是长短时记忆单元(LSTMs), 可以捕捉时间序列信号的变化趋势,适用于EEG/MEG记录下的电位波动解析; - 图形神经网络(GNNs) 则非常适合表征具有拓扑关系的对象集合——比如由多个节点组成的全脑连通矩阵[^1]. ```python import torch from torch_geometric.nn import GCNConv class BrainGraphModel(torch.nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(BrainGraphModel, self).__init__() self.conv1 = GCNConv(input_dim, hidden_dim) self.conv2 = GCNConv(hidden_dim, output_dim) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = torch.relu(x) x = self.conv2(x, edge_index) return x ``` 上述代码展示了一个简单的基于PyTorch Geometric库实现的图卷积网络架构例子,可用于分析大脑网络数据。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值