标准化人脑分区

使用脑图谱来定位感兴趣的区是做出神经科学有效统计推断的必要条件。这些图谱以体积(Volume)或表面(Surface)坐标空间表示,可以从多个角度描述大脑拓扑结构。尽管在过去50年中有许多脑图谱在该领域流传,但对它们进行标准化的努力有限。标准化可以促进方位、分辨率、标签方案、文件存储格式和坐标空间指定等方面的一致性和透明度。我们的团队致力于将广泛选择的流行人脑图谱整合到一个经过策划的开源库中,在那里按照标准化协议存储它们,并附有元数据,这可以作为未来图谱的基础。包含图谱、规范以及相关转换功能的存储库可在neuroparc OSF注册库获得。本文发表在Scientific Data杂志。可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,思影提供脑影像数据分析及课程,如感兴趣也可添加微信咨询)

介绍:

     理解大脑的组织结构是人类神经科学研究的关键挑战之一,对于临床转化也至关重要。近年来,将大脑分割成功能和结构上不同的区域取得了令人印象深刻的进展[3],推动了网络神经科学的发展。通过一系列技术,如聚类、多元分解、基于梯度的连接]以及多模态神经影像学,脑区划分使人们能够深入了解大脑的拓扑组织和网络特性。进而,这些特性允许研究者研究大脑行为与发展、认知和临床表型的关联。

      最近,对了解大脑组织感兴趣的研究人员可以使用各种脑图谱来定义基于网络分析的节点。尽管这种多样性对研究人员来说是一个福音,但在不同研究中使用不同的分区使评估大脑行为关系的可重复性变得困难(例如,比较具有不同组织和节点数量的分区)。将多个脑分区整合到一个标准化的列表中,将为研究人员评估神经影像学研究的复现提供宝贵的资源。

      一些整合这些图谱的努力已经在进行中。例如,Nilearn是一个流行的Python包,提供了用于神经影像学的机器学习和信息学工具。Nilearn提供了几个单行命令行界面函数来"获取"图谱和数据集。Nilearn包括12个解剖学和功能定义的图谱,如Harvard-Oxford和自动解剖标记(AAL)分区。尽管这是一个有希望的原型,但Nilearn目前的图谱收集代表了现有图谱的有限范围,最近的基于梯度、基于表面和多模态分区尚未包括在任何中央存储库中。更重要的是,现有的图谱存储库尚未尝试系统地按照单一规范标准化其收藏。如果没有完善的标准,研究人员就会面临有关每个图谱的信息有限的问题,因此将神经科学发现与图谱的组织联系起来变得更加困难。此外,如果研究人员需要跨图谱进行比较,则必须提供某种形式的元数据来描述它们之间的相似性和差异。Neuroparc通过以下方式缓解这些问题:

      (1)提供详细的图谱规范,使研究人员能够轻松理解现有图谱并生成符合此规范的新图谱;

      (2)神经影像学中最常用的图谱存储库,所有这些图谱都存储在图谱库中;

      (3)一组用于转换、比较和可视化这些图谱的功能。这里呈现的Neuroparc包包括46个不同的成人人脑分区,包括基于表面和基于体积(Volume)的分区。在这里,我们通过比较图谱之间的空间相似性来概述这些分区之间的关系,这是通过Dice系数和调整后的互信息来衡量的。为了促进这项工作的复制和扩展,所有的数据和代码都可以从注册的OSF或github存储库获得。

方法

数据汇编

     Neuroparc中包含的图谱是从多个位置收集的。如前所述,目前还没有图谱存储的标准,因此所有收集到的数据集都转换为单一格式。使用AFNI的3dresample将收集到的图谱重新采样为1 mm³、2 mm³或4 mm³的体素分辨率,然后配准到下面描述的参考T1加权图像。每个图谱的来源和附加信息可以在GitHub存储库的README文件中找到。

参考大脑

     为了允许不同图谱之间的直接比较,必须为所有相关图谱使用标准参考大脑。在Neuroparc中,提供了单个参考大脑和多个分辨率,产生一致的坐标空间。Neuroparc使用蒙特利尔神经科学研究所152非线性第6代参考大脑,在文件命名结构中缩写为MNI152NLin6。虽然MNI152NLin6 T1加权图像有对称和不对称两个版本,但Neuroparc图谱配准到FSL 5.0和新版本SPM都使用的对称版本。然而,Neuroparc中提供的代码允许将任何图谱配准到用户选择的任何参考大脑。

      该图像以T1加权MRI的GNU压缩NIfTI文件格式存储,在Neuroparc中有三种分辨率(1 mm³、2 mm³和4 mm³)可供配准时轻松使用。这些文件的命名约定清楚地显示了它们的来源和分辨率,如:MNI152NLin6_res-<resolution>_T1w.nii.gz。例如,1 mm³分辨率的分辨率输入格式为"1×1×1"。

图谱图像和处理

      Neuroparc中汇编的图谱图像以包含分区图谱的GNU压缩NifTi文件的形式存储。在这些文件中,分区图像中的每个感兴趣区域(ROI)由从1到n的唯一整数表示,其中n是ROI的总数。通过使用AFNI的3dresample将图谱重采样到所需的体素分辨率,然后使用FSL的flirt函数将其配准到相同分辨率的MNI图像。生成的图谱的命名约定为:<atlas_name>_space-MNI152NLin6_res-<resolution>.nii.gz。atlas_name字段对每个图谱图像都是唯一的,最好不超过两个单词,中间没有空格(例如Yeo-17、Princetonvisual、HarvardOxford)。

图谱元数据

      使用Neuroparc中的Python脚本,为每个图谱生成包含相关元数据的JSON文件。该文件分为两部分:区域范围和图谱范围信息。JSON文件的命名约定遵循图谱图像的命名约定,体素大小为1 mm³的图谱被命名为<atlas name>_space-MNI152NLin6_res-1×1×1.json。

     术语"区域范围"是指图谱中每个感兴趣区域(ROI)特有的信息。这些信息包括该ROI在图谱中的体素值、解剖标签(如果可能)、ROI中心的坐标以及构成该区域的体素数。中心和大小可以使用Neuroparc脚本目录中提供的代码计算。

      虽然必须指定标签,但这些信息并非与所有图谱都相关。例如,使用算法生成的图谱,如Slab,其ROI与单个解剖区域的相关性不强。在这种情况下,应该使用NULL作为区域的标签。对于具有解剖学意义的ROI,命名应遵循从最大区域到最小区域的层次格式,每个名称之间用下划线分隔。修饰词,如"Superior"或"Medial"可以放在解剖区域之前。Desikan图谱中就有这样的例子,其中包含标签为"L_rostral_anterior_cingulate_cortex"的区域。标记的主要目的是清楚地表达ROI的位置及其可能具有的任何解剖学意义。避免使用独特的缩写或不被广泛使用的术语,有助于MRI分析新手的易用性。图4显示了一个示例json文件。

图片

图4 用于存储图谱元数据的JSON文件示例。括号中存储的元数据("color"、"description"等)是可选的,但我们鼓励提供这些信息。

      区域范围数据中的可选字段包括描述和颜色。如果需要,可以使用描述来提供比区域标签更多的信息。Yeo-7 Networks图谱中就有这种用法的例子。该图谱的标签格式为"7Networks_2",但该标签的描述是相应的功能网络,在这种情况下是"Somatomotor"。颜色字段必须以[R, G, B]的形式给出,只有在用户想要在可视化时指定区域的颜色时才使用。

      全脑范围的数据必须包括图谱的名称、描述、原始坐标空间和来源。名称字段允许比文件名中更详细的阐述。描述更加灵活,允许图谱的创建者简要描述对图谱用户的重要信息。预期用途或生成方法都是此字段中提供的信息示例。由于Neuroparc中的所有图谱都存储在相同的坐标空间中,因此必须指定创建图谱时使用的坐标空间。

     最后,应在源字段中包括详细描述图谱的出版物,以便用户可以更全面地了解正在使用的图谱。全脑范围数据的可选字段都可以计算,包括区域数量、每个区域的平均体积、分割区域是否分层以及图谱是否对称。

    

Dice系数

      由于每个图谱都已配准到MNI空间,我们计算了图谱之间的Dice系数,以比较不同的图谱。Dice系数是两个集合之间相似性的度量。具体来说,它测量两个集合之间的重合指数(CI),并按集合的大小进行归一化。设h为集合A和B中重叠点的数量,a和b为它们对应集合的大小。如果两个集合是分割图像中的标记区域,那么图像之间任意一对区域之间的Dice系数由下式给出:

图片

      其中i是图像1中的区域,j是图像2中的区域。结果是一个相似性矩阵,如图2所示。由于该图可视化了两个图谱中两个区域之间的相似性,因此Dice图提供的信息可用于量化给定图谱中的哪些区域与另一图谱中的区域最相似。这种方法已被证明对于缺乏解剖标注的分区进行推断非常有价值,因为它允许在解剖水平上推断在分区水平上实现的结论。

调整后的互信息

      调整后的互信息是两个标记集合相似性的另一种度量,量化了在给定另一个区域的情况下,特定点可以被识别为属于某个区域的程度。它与Dice系数的不同之处在于,与其他度量相比,它往往对区域大小和位置更敏感。

      与Dice系数类似,调整后的互信息不依赖于区域的标签。在其他条件相同的情况下,共享许多点的体积可能具有更高的互信息分数。

     为了确保所有图谱比较都在相同的尺度上,Neuroparc计算调整后的互信息分数。设H(·)表示熵,N为总元素(体素)数,E(MIAB)表示大小为a和b的集合的预期互信息。这里,PA(i)是从集合A中随机选择的点属于区域i的概率。

图片

其中PA,B(a, b)是体素属于集合A中的区域a和集合B中的区域b的概率。

图片

其中ai是集合A中区域i的体素数,bj是集合B中区域j的体素数

图片

图片

如[参考文献46]中所提供的。

      图3显示了所有图谱对之间的调整后互信息。该分数提供的信息是全图谱范围的,而Dice分数是按区域计算以生成图谱的。各种Schaefer图谱、Yeo自由图谱和DS图谱等图谱组之间的相似性立即显而易见。最近的研究强调了不同分区提供的互补信息的重要性,突出了来自异构来源的分区集合的可用性和易用性的重要性。

结果

图谱

      通过使用Neuroparc中提供的python脚本,46个图谱被重采样为1 mm³、2 mm³或4 mm³,并配准到蒙特利尔神经科学研究所152非线性第6代参考大脑(MNI)。每个图谱都有一个附带的JSON文件,其中包含方法中描述的相关元数据。在46个图谱中,有17个在重采样和配准过程中至少丢失了一个ROI,这在JSON文件中有记录。对于包含更多ROI的图谱,由于平均ROI尺寸较小,这种现象更常见。ROI越小,在下采样或配准时被周围较大的ROI覆盖的可能性就越大。图1显示了1 mm³分辨率下各种图谱的可视化。表1记录了每个体素大小下存在的ROI数量。

图片

图1 Neuroparc中主要图谱区域的比较。这些可视化使用MIPAV三平面视图在相同的切片编号上制作。每个图谱在每个正交规范平面(H =水平面,S =矢状面,C =冠状面)上显示一个横截面。对于大多数图谱,切片编号为(90, 108, 90)。

表1 该表包含Neuroparc中包含的图谱以及每个体素大小的ROI数量,显示了重采样和配准过程中丢失的ROI数量。

图片

Dice系数

     使用Neuroparc中提供的Python脚本,该脚本使用了AFNI和FSL的函数,计算了图谱对之间的Dice系数。有关计算的更多信息,请参见方法中的Dice系数部分。每对图谱的Dice分数图,如图2所示,可以在Neuroparc OSF注册存储库中找到。这些图的目的是既强调每个分区之间的差异及其代表的内容,又作为跨图谱ROI的比较指标。访问这些值允许进行简单的跨分区分析,这是Neuroparc用户的有用工具。经检查,每个Dice系数图在表示两个不同图谱的ROI之间存在的重叠方面都是准确的。

图片

图2 Yeo-17网络图谱与300分区Schaefer图谱之间的Dice分数图。在Dice分数图中,Dice分数越大,重叠百分比越大。由于Schaefer的ROI数量较多,几个不同的ROI与Yeo-17的单个ROI重叠。在此Dice图中,Yeo-17的0 ROI表示图像的背景,即图像中的空白空间。该ROI没有Dice值为0表明两个图谱没有覆盖相同数量的脑体积。

调整后的互信息

      使用Neuroparc GitHub存储库中提供的另一个Python脚本,计算了图谱之间的调整后互信息(AMI)。有关计算的更多信息,请参见方法中的调整后互信息部分。图3中显示的结果肯定了在数据分析过程中访问多种不同分区方法的必要性。每个图谱都是使用不同的参考数据创建的,旨在跟踪大脑中存在的特定结构或功能。如果图谱相似到可以互换的程度,就不会存在如此广泛的AMI分数,也就没有拥有图谱存储库的理由。Schaefer图谱集、DS图谱集和Slab图谱之间的AMI一致大于0.8,这是一个预期结果,因为它们是使用具有不同参数和容差的相同方法创建的。

图片

图3Neuroparc中包含的图谱之间的调整后互信息。使用不同参数从相同算法生成的图谱,如Yeo、Slab、Schaefer和DS,具有预期的高互信息量。

     JHU和Princeton图谱对大多数其他图谱显示出一致较低(<0.3)的AMI值。这可以通过以下事实来解释:这两个图谱仅与解剖学子结构相关,例如JHU的视觉皮层和Princeton的海马区域。它们对大脑的有限覆盖导致与其他基于表面或基于体积的图谱的互信息较少。

讨论

为什么使用Neuroparc

      Neuroparc图谱集合和元数据格式化方法有两个目的:(1)提供一个标准化分区的存储库,可以互换使用而无需任何额外努力;(2)记录每个分区的所有相关信息,以便在研究中轻松使用。Neuroparc在这两个方面都取得了成功,并且还实现了图谱之间新水平的比较。使用本文提出的格式化方法,存储库的任何用户都能够找到每个图谱的来源、图谱中存在多少不同的ROI、每个ROI的位置和大小、图谱的分割与其他图谱的比较方式,以及不同图谱的ROI所覆盖的区域之间是否存在显著相关性。格式化方法还允许不断改进和完善图谱元数据,下面在"未来发展"中讨论。通过标准化图谱,研究人员可以使用各种图谱轻松分析MNI空间中的MRI数据,而无需额外处理。Neuroparc提供的指标,如调整后的互信息和Dice系数,也告知用户图谱是如何相关的。

潜在问题

       用于生成Neuroparc图谱的方法可能会由于下采样和配准而导致ROI丢失。这种情况发生的可能性与给定图谱中ROI的平均大小呈反比。丢失的ROI仍在相应的JSON文件中进行编目,中心坐标和大小给定"null"值。虽然存在尝试防止这种信息丢失的方法,但根据体素大小对给定图谱进行过度操作可能会影响使用该图谱得出的任何结论。因此,Neuroparc中的分区不包含这些附加方法,用户需要决定如何最好地重新采样相应的1 mm体素分区以适合其独特需求。

未来发展

      在Neuroparc的当前迭代中,有几条改进路线。最明显的是扩展图谱集合。我们提出的标准化新图谱和跟踪元数据的方法使这项任务变得简单。由于强调清晰简洁的信息,任何新图谱集的批准都是一个快速简单的过程。除了MNI之外,还可以将所有图谱标准化为其他空间,从而可以提供不同体素大小和标准化空间的图谱。Neuroparc发展的另一条路线是对ROI没有明确定义解剖边界的图谱进行解剖标记。Neuroparc中当前的解剖标签取自首次制作时发表的作品。为了保持原作者的理念,对提供的标签做了很少的修改,主要是为了清晰起见重新措辞,并遵循从最大结构到最小结构的方法。由于标记图谱的主观性质,首先必须建立一个公认的解剖标记参考。从那里,可以实用地分配解剖标签。

结论:

     本文提出的方法以及Neuroparc中的图谱存储库试图解决脑图谱缺乏标准化和集中化的问题。我们相信Neuroparc体现了朝着解决这个问题迈出的第一步。我们呼吁其他研究人员利用其中包含的资源,并鼓励大家做出贡献。

如需原文及补充材料请添加思影科技微信:1996207406318983979082获取,如对思影课程及服务感兴趣也可加此微信号咨询。另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布,如果我们的解读对您的研究有帮助,请给个转发支持以及右下角点击一下在看,是对思影科技的支持,感谢!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值