卷积神经网络整理

卷积神经网络由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT + CONV + RELU + POOL + FC

 

一、卷积层

 

卷积层的作用是:提取特征

是对图像的一个邻域进行卷积得到图像的邻域特征,池化层是使用pooling技术将小邻域内的特征点整合得到新的特征。

二、池化层:
在完成卷积特征提取之后,对于每一个隐藏单元,它都提取到(r-a+1)*(c-b+1)个特征,把它看作一个矩阵,并在这个矩阵上划分出几个不重合的区域,然后在每个区域上计算该区域内特征的均值或最大值,然后用这些均值或最大值参与后续的训练,这个过程就是池化。
池化操作一般有两种:Avy Pooling,max Pooling

 

池化层的本质是采样,Pooling对于输入的Feature Map,选择某种方式对其进行压缩。(降采样层)

 

池化的优点:

1.显著减少参数数量

2.池化单元具有平移不变性

     pooling可以保持某种不变性(旋转、平移、伸缩等)

池化的方式:

1. 一般池化(General Pooling)

1)mean-Pooling, 即对邻域内特征点只求平均,对背景保留更好

2)max-Pooling, 即对邻域内特征点取最大值,对纹理提取更好

3)Stochastic-pooling,介于两者之间,通过对像素点按照数值大小赋予概率,在按照概率进行亚采样;

特征提取的误差主要来自两个方面:(1) 邻域大小受限造成的估计值方差增大;(2) 卷积层参数误差造成估计均值的偏移。一般来说,mean-polling能减小第一种误差,更多的保留图像的背景信息,max-pooling能减小第二种误差,更多的保留纹理信息。在平均意义上,与mean-pooling近似,在局部意义上,则服从max-pooling的准则。


三、全连接层:在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接层的全连接层可以转化为卷积核为1*1的卷积;而前层是卷积层的全连接层可以转化为卷积核为h*w的全局卷积,h和w分别为前层卷积结果的高和宽。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值