语音识别之语音特征提取一

本文介绍了语音识别中的特征提取技术,包括短时能量、短时过零率、Fbank和MFCC等。重点讨论了MFCC的实现过程,涉及预加重、梅尔滤波器、DCT等概念。MFCC通过预加重、FFT、梅尔滤波器组、对数转换和DCT等步骤,提取出声道特征,用于语音内容的识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

语音识别的第一步就是语音特征提取,语音信号是在人体中肺、喉、声道等器官构成的语音产生系统中产生的,它是一个高度不平稳的信号,它的幅度谱和功率谱也随着时间不停的变化,但是在足够短的时间内,其频谱特征相当平稳,因此在进行语音分析时,我们多采用分帧的方式进行短时分析,查看多篇文章中,使用帧长为25ms,帧移为10ms的方式进行分帧,并且计算出每帧内的功率谱进行其他的操作。功率谱在一些特征提取技术中得到应用,比如MFCC、Fbank,查询多篇文章,了解了几种被广泛应用个的特征提取技术,他们的特性不同也就决定了他们有着不同的应用范围,因此,对下面这几款常用的方法都进行基本的理解。
1、短时能量
2、短时过零率
3、Fbank
4、MFCC
5、LPC
6、LPCC
7、LSF
8、DWT
9、PLP
10、CQT

上述方法中的短时能量和短时过零率已在之前的代码中简单实现过,因此暂不再深入探究,后续遇到实际问题时再行优化。对于Fbank和MFCC这两种方式,放到一起进行总结,因为MFCC=MFCC+DCT。
Fbank:Filter Bank,也就是指使用梅尔滤波器组。
MFCC:Mel-Frequency cepstral cofficients,梅尔频率倒谱系数。
DCT:Discrete Cosine Transform,离散余弦变换。
MFCC的实现过程如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值