一、导入数据
注意按需选择【将第一行作为变量名】
二、信度与效度检验
2.1信度检验
对问卷进行Cronbach’s Alpha信度检验。如果此值高于0.8,则说明信度高;如果此值介于0.7~0.8之间,则说明信度较好;如果此值介于0.6~0.7,则说明信度可接受;如果此值小于0.6,说明信度不佳。
命令:
alpha var1 var2 var3...
输出:
分析:
Cronbach’s Alpha为0.8610,说明信度高
2.2 效度检验
对量表的效度分析采用KMO和Bartlett球检验法进行检验。如果此值高于0.8,则说明研究数据非常适合提取信息,效度很好;如果此值介于0.7~0.8之间,则说明研究数据适合提取信息,效度较好;如果此值介于0.6~0.7,则说明研究数据比较适合提取信息,效度一般;如果此值小于0.6,说明数据效度一般。
命令:
ssc install factortest
factortest var1 var2 var3
先安装factortest,然后进行检验
输出:
找到Bartlett球检验近似卡方=1475.101,df=78, p-value=0, KMO=0.891.
分析:
KMO结果结果为0.891,大于0.8,Bartlett的球形度检验中p<0.001,说明变量间存在相关因子,适合做因子分析。
三、因子分析
3.1量表的旋转因子载荷系数与公因子方差结果
命令:
factor q1_1 q1_2 q1_3 q2_1 q2_2 q2_3 q3_1 q3_2 q3_3 q4_1 q4_2 q4_3, factors(4)
rotate, varimax
上面假设量表有4个维度。
输出:
分析:
经过处理可得量表的旋转因子载荷系数与公因子方差结果:
可以看出,各题项的因子载荷系数绝对值均大于0.4,即说明选项和因子有对应关系
tips:如何快速将stata的表格复制到word?
Answer:安装 asdoc并用asdoc
导出
ssc install asdoc
asdoc summarize, replace
其中summarize可替换成你想输出的命令
3.2量表方差解释率结果
根据前面factor和rotate的输出可总结如下:
四、描述性统计分析
4.1样本人口统计学特征(频数统计)
命令
tab var1
输出:
4.2多选题的处理
Q5为多选题,数据格式如下:
现在需要将各选项分开计算出现频次并绘制直方图,步骤如下
1. 创建唯一标识符变量:
gen id = _n
2. 拆分多选项变量
split Q5, parse(,) gen(option)
3. 将数据转换为长格式
reshape long option, i(id) j(option_num)
drop if option == ""
4. 将选项变量转换为数值类型:
destring option, replace
5. 将选项值替换为汉字标签:
label define option_label 1 "抖音" 2 "快手" 3 "B站" 4 "微信视频号" 5 "其他"
label values option option_label
6. 计算频次:
tabulate option, generate(freq)
输出:
7. 绘制直方图
这一步我还没太搞懂哈哈哈,我就弄进excel里面画啦,也蛮方便的
五、相关性分析
需要获得的不是每个变量间的相关性,而是维度间的相关性
这里我采用的是维度内取平均,然后再进行相关性分析的方法
egen dim1_mean = rowmean(dim1_var1 dim1_var2)
egen dim2_mean = rowmean(dim2_var1 dim2_var2)
egen dim3_mean = rowmean(dim3_var1 dim3_var2)
egen dim4_mean = rowmean(dim4_var1 dim4_var2)
correlate dim1_mean dim2_mean dim3_mean dim4_mean
输出
六、回归分析
将Q1 Q2 Q3 Q4 Q6 Q7 Q8作为控制变量,dim1_mean dim2_mean dim3_mean作为自变量,而将 dim4_mean作为因变量进行线性回归分析,另外需要计算VIF
命令:
regress dim4_mean Q1 Q2 Q3 Q4 Q6 Q7 Q8 dim1_mean dim2_mean dim3_mean
regress dim4_mean Q1 Q2 Q3 Q4 Q6 Q7 Q8 dim1_mean dim2_mean dim3_mean ,beta
vif
注意第一条命令是进行回归分析,输出非标准化系数、t值和p值
第二条命令是为了计算标准化系数beta
输出: