什么是统计套利

统计套利基于历史数据分析,寻找相关资产间长期稳定的关系,通过价差回归获利。常见的策略包括配对交易、多因素模型等。本文介绍了协整关系的配对交易策略,涉及寻找协整股票、建模及交易信号捕捉。该策略具有低风险、低波动率特点,但也面临收益有限和套利机会少等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       统计套利主要是在对历史数据进行统计分析的基础上,估计相关变量的概率分布,并结合基本面数据进行分析以指导套利交易,其主要分为配对/一揽子交易、多因素模型、均值回归策略、协整以及针对波动率与相关性的建模,与传统单边投资方式相比,统计套利多空双向持仓在处理大资金方面可以有效规避一部分风险,股指期货中常用的期现套利和跨期套利以及商品期货中跨品种套利都是常用的统计套利的例子,其中期限套利是强收敛既到期时期货和现货的价差必收敛,而其它策略则存在一些价差维持的风险。这里主要介绍一种最基本也是最常用的一种策略-配对交易。

       与针对收益率建模的β中性策略不同,基于协整关系的配对交易直接针对股票价格序列建模,若两只或多只股票的股价存在长期稳定的线性关系,认为它们之间存在协整关系:


       两只股票的价格序列存在协整关系一般包含两个条件,一是历史股价序列都是一阶单整向量,二是序列的某种线性组合是平稳的,故构建的线性方程的残差是平稳的。当某一对股票的价差既协整方程的残差偏离到一定程度时开仓,价差回归均衡时则获利了结,股价序列存在协整关系保证了长期价差将大概率回复至均值附近,协整策略的主要思路如下:


Ø  找出相关性好的若干对股票

Ø  对残差进行相应检验,首先要检验平稳性,其次检验残差的自相关性和异方差性,若存在,考虑采用ARMA或GARCH模型进行滤波,之后进行正态检验,若不满足正态性假定,可以考虑采用非参数方法来捕捉交易信号

Ø   找出每对股票的长期均衡关系(协整关系)

Ø  将残差分为可预测和不可预测的部分: ,通常假定可预测部分为0,针对不可预测的部分进行建模,当 

### 使用Python实现统计套利的方法和案例 #### 配对交易策略概述 配对交易是一种常见的统计套利形式,其核心在于识别并利用两只股票或其他金融工具之间的历史价格关系。当这两只证券的价格偏离正常范围时买入被低估的一方卖出高估的一方,在两者回归到正常的相对价值水平后再平仓获利。 #### 实现去中心化后的价差序列计算 为了执行这种策略,首先需要获取两支目标资产的历史收盘价数据,并据此构建它们之间差异的时间序列——即所谓的“价差”。接着去除该时间序列中的长期趋势成分,以便更好地捕捉短期波动特性: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt def calculate_demeaned_spread(price_a, price_b): """ 计算两个价格数组间的去均值价差 """ spread = price_a - price_b demeaned_spread = spread - np.mean(spread) return demeaned_spread df = pd.read_csv('./data.csv') price_A = df['rb1907'].values price_B = df['rb1908'].values mspread = calculate_demeaned_spread(price_A, price_B) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(range(len(mspread)), mspread) ax.axhline(y=0, color='r', linestyle='-') plt.title('Demeaned Spread Over Time') plt.xlabel('Time Index') plt.ylabel('Spread Value') plt.show() ``` 此部分代码实现了从CSV文件读取指定列的数据作为两种商品期货合约`rb1907`与`rb1908`的日线收盘价;随后调用自定义函数`calculate_demeaned_spread()`来获得二者间经过去除平均值得到的新序列;最后绘制图表展示这些变化情况[^2]。 #### 进一步处理与决策逻辑 除了可视化之外,还需要设定具体的买卖信号触发条件以及风险管理措施。这通常涉及到设置上下限阈值(比如±2倍标准差),一旦当前时刻的价差超出这个区间就认为出现了异常状态而采取相应行动。同时也要考虑止损位防止损失过大。 对于更复杂的场景下还可以引入协整测试验证所选标的是否确实存在稳定的关系,从而提高模型的有效性和可靠性。此外,考虑到实际操作过程中不可避免会遇到的各种摩擦因素如滑点、延迟等问题,则有必要预先评估潜在影响并对算法做出适当调整优化性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值