运筹学基础(七):拉格朗日松弛(Lagrangian relaxation)

本文介绍了拉格朗日松弛法的基本概念,如何通过引入拉格朗日乘子将难以处理的约束转化为目标函数,以及如何确定松弛哪个约束以简化问题。文章还阐述了对偶问题的关系,指出这种方法在解决整数规划问题时的优势和适用场景,最后提及了求解策略和参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本概念

原问题

考虑如下的整数规划问题:
m i n c T x s . t . D x ≤ d x ∈ X X = { x ∈ Z n ∣ A x ≤ b } \begin{align} min \quad c^Tx \\ s.t. Dx \leq d \tag{1.1}\\ x \in X \tag{1.2}\\ X = \{x\in Z^n|Ax\leq b\} \tag{1.3} \end{align} mincTxs.t.DxdxXX={ xZnAxb}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值