文章目录 基本概念 原问题 松弛问题、拉格朗日乘子、对偶函数 对偶问题 三个问题之间的关系 为什么要用拉格朗日松弛法 算法流程 核心问题 松弛哪个约束 松弛后分解的子问题的求解 拉格朗日乘子怎么定 参考资料 基本概念 原问题 考虑如下的整数规划问题: m i n c T x s . t . D x ≤ d x ∈ X X = { x ∈ Z n ∣ A x ≤ b } \begin{align} min \quad c^Tx \\ s.t. Dx \leq d \tag{1.1}\\ x \in X \tag{1.2}\\ X = \{x\in Z^n|Ax\leq b\} \tag{1.3} \end{align} mincTxs.t.Dx≤dx∈XX={ x∈Zn∣Ax≤b}