“从n个无序的数中选出m个最大数”在刷阿里巴巴2017实习生笔试题时遇到的一道选择题,后来发现《剑指offer》面试题30也是讲述得这道题,看了相关的解法后总结如下:
普通思路:将输入的n个无序的数进行排序,排序之后位于最前面的m个数即为所求。由于排序的时间复杂度最快为O(n*logn),因而这种思路的时间复杂度为O(n*logn)。
另外一个思路是:每次都扫描一遍这n个数,取出最大值,因而这样扫描m次就能得到最大的m个数。时间复杂度为O(m*n)。
改进思路1:如果基于第m个数来调整,使得比第m个数字小的所有数字都位于数组的左边,比第m个数字大的所有数字都位于数组的右边。这样调整之后,位数数组中左边的m个数字就是最小的m个数字(这k个数字不一定是排序的)。这种思路时间复杂度为O(n)。
参考代码如下:
void GetLeastNumbers_Solution1(int* input, int n, int* output, int k)
{
if(input == NULL || output == NULL || k > n || n <= 0 || k <= 0)
return;
int start = 0;
int end = n - 1;
int index = Partition(input, n, start, end);
while(index != k - 1)
{
if(index > k - 1)
{
end = index - 1;
index = Partition(input, n, start, end);
}
else
{
start = index + 1;
index = Partition(input, n, start, end);
}
}
for(int i = 0; i < k; ++i)
output[i] = input[i];
}
改进思路2:立一个m个数的有序集合(数组还是链表都可以)记录最小数,首先存入n个数中前m个元素,然后从n个数中第m+1个元素开始,逐个与该数组中的最小数进行比较,若大则进行替换。封装添加和删除操作,添加是进行排序,删除时选择最小数。这种思路时间复杂度为O(n*logm)。
参考代码如下:
typedef multiset<int, greater<int> > intSet;
typedef multiset<int, greater<int> >::iterator setIterator;
void GetLeastNumbers_Solution2(const vector<int>& data, intSet& leastNumbers, int k)
{
leastNumbers.clear();
if(k < 1 || data.size() < k)
return;
vector<int>::const_iterator iter = data.begin();
for(; iter != data.end(); ++ iter)
{
if((leastNumbers.size()) < k)
leastNumbers.insert(*iter);
else
{
setIterator iterGreatest = leastNumbers.begin();
if(*iter < *(leastNumbers.begin()))
{
leastNumbers.erase(iterGreatest);
leastNumbers.insert(*iter);
}
}
}
}
更多详细的分析可以看《剑指offer》这本书。