Introduction
首先,我要贴出大神霸气侧漏的论文Introduction:
这可以解释为“艺高人狂妄”么?(→_→)
该文章继承了YOLOv2的bbox预测任务的方法,对bbox分类任务进行了修改 (用简单的logistic替换下softmax) 。
将DarkNet-19扩展至DarkNet-53:
Innovation
YOLOv3的作者自己也说了,本文没啥trick,就是纯粹博采众长,做做小实验,然后一不小心就搞出了YOLO第三代。。。
作者采用了更多的scale(3种scale),加深了DarkNet(直至53层),使得YOLOv3能够更好地抽取特征和保留小物体的位置信息。虽然速度慢了一倍多(但是依然很快),却拉高了不少精度(尤其是 AP50 A P 50 )。
且大大改善了YOLO之前的一大弊病:小物体漏检。使之在 APs A P s 这一单项上能够达到和 FPN 同级别,且仅逊于RetinaNet的程度。
Result
作者直接盗了RetinaNet的图,并P上了自己的曲线,显示其检测速度吊打RetinaNet:
经过加深的DarkNet作为一个backbone,在ImageNet上可以和老大哥级的basemodel——ResNet在基础的cls任务上打成平手:
虽然检测精度不如你RetinaNet,但是我的
AP50
A
P
50
单项成绩能进前三啊:
然后作者顺便吐槽了一下要是回到以前那个只以 AP50 A P 50 为衡量标准的年代该多好。。。 (>▽<)
Thinking
- Joseph Redmon 大神为嘛这么萌。。。 ╮(╯_╰)╭