[課程筆記] 機器學習基石 - W3.Type of Learning

目录

Video1: Learning with Different Output Space

二元分类问题

多分类问题

回归问题

Structured Learning

Video2: Learning with Different Data Label

Supervised Learning

Unsupervised Learning

Semi-supervised Learning

Reinforecement Learning

总结

Video3: Larning with Different Protocol

Batch Learing 

Online Learning

Active Learning 

Video4: Learning with Different Input Space

Concrete Feature

Raw Features

Abstract Features

参考


Video1: Learning with Different Output Space

二元分类问题

  • 信用卡发卡问题是二元分类问题
  • 输出 yes/no

多分类问题

  • 输出的值域是多种类别

回归问题

  • 输出是连续的数值

Structured Learning

  • 输入与输出,都是带有结构、模式的数据
  • 以词性标注任务为例: 
    • 输入: 单字序列
    • 输出: 词性序列
    • 底层是复杂的多分类问题
    • 输入与输出都是有多种组合变化的可能

Video2: Learning with Different Data Label

Supervised Learning

  • 知道数据的正确答案
    •  E.g. 硬币多分类 (给定硬币特性数据、类别)

Unsupervised Learning

  • 不知道数据的正确答案
    • E.g. 硬币多分类 (给定硬币特性数据、但没有类别数据)
  • 其他非监督学习的例子:
    • Density estimation: 非监督的回归问题
    • Outpier detection: 非监督的二元分类

Semi-supervised Learning

  • 数据中,部份知道正确答案
  • 因为具标据的数据不容易取得,通常需要大量人力、时间进行标注
  • 半监督学习能够利用少量标注数据与大量的未标注数据,建立模型

Reinforecement Learning

  • 有些情况下,正确的答案并不明确,只能给模型隐性的答案
    • 训练宠物坐下 ... 何谓正确的坐下?
    • 训练打牌 ... 何谓正确的出牌决策?
  • 透过奖励与惩罚来辅助模型学习

总结

Video3: Larning with Different Protocol

Batch Learing 

  • 从一批数据得到模型,没有更新机制

Online Learning

  • 随着新的数据进入,模型能够不断更新

Active Learning 

  • protocol: 可以视为是学习的哲学
    • Batch: 填鸭式教育
    • Online: 被动的持续学习
    • Active: 主动提问
  • 主动学习能让电脑主动提问,提升学习效率,降低所需的标注数据量

Video4: Learning with Different Input Space

Concrete Feature

  • 回顾信用卡发卡问题,其输入是比较具体、并且与输出有相关的特征
  • 这类特征被称为 Concrete Feature
    • 通常是经过处理的
    • 特征本身带有人类对该领域的知识
    • 在ML中是相对容易使用的输入 

Raw Features

  • 在手写文字识别中,有两种特征可以作为输入:
    • Concrete features:  文字的对称性、文字的密度
    • Raw features: 16 x 16 的像素强度
  • Raw features 通常只具备简单的物理意义,因此在 ML 中较难被使用
  • 许多问题中,我们搜集到的数据都是 raw features,像是:
    • 语音识别: 声音讯号
    • 图像识别: 图像讯号
  • 通常会做进一步处理,将 raw features 转换成更有意义的 concrete features
    • 透过人工进一步处理: 特征工程
    • 透过机器进一步处理: 深度学习

Abstract Features

  • 在用户的音乐评分预测问题中,只有抽象数据,这类数据并不具物理意义
  • 在 ML 中,这种特征是最难被使用的
  • 一种做法是,找到用来描述特定用户、音乐的特征,并根据这些特征来预测
  • 这些特征可以透过特征工程、模型自动学习来进一步取得

参考

  1. 機器學習基石上 (Machine Learning Foundations)---Mathematical Foundations | Coursera

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值