HDOJ-1028-Ignatius and the Princess III 解题报告

       普通母函数基础题。题意:对于整数拆分问题,4有如下几种拆法

4 = 4

4 = 3 + 1

4 = 2 + 2

4 = 2 + 1 + 1

4 = 1 + 1 + 1 + 1

其中3 + 1和1 + 3属于同一种拆法。

现在给你一个数,问这个数有几种拆法。


       我的解题思路:普通母函数题,令数字为x的指数,那么可以构造出母函数(1 + x + x^2 + ...)(1 + x^2 + x^4 + ...)...,

算出母函数序列后,x^n的系数就是n能被拆分的方法数了。


       我的解题代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>

using namespace std;

const int N = 122;

int coe[N], tmp[N];
int n;

void Init();

int main()
{
    Init();
    while (~scanf("%d", &n))
    {
        if (n == 0) break;
        printf("%d\n", coe[n]);
    }
    return 0;
}

void Init()
{
    memset(coe, 0, sizeof(coe));
    memset(tmp, 0, sizeof(tmp));
    coe[0] = 1;
    for (int i=1; i<N; ++i)
    {
        for (int j=0; j<=120; ++j)
        {
            for (int k=0; k<N; ++k)
            {
                if (k * i + j > 120) break;
                tmp[k * i + j] += coe[j];
            }
        }
        memcpy(coe, tmp, sizeof(coe));
        memset(tmp, 0, sizeof(tmp));
    }
    return;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值