Pytorch学习笔记6:处理多维特征的输入

本文探讨了在PyTorch中处理多维特征输入的问题,通过改进单维度逻辑回归模型,引入Mini-Batch概念,利用矩阵运算提高算法效率。文章详细解释了如何通过调整Linear层参数实现从8维输入到1维输出的转换,同时提出增加网络层数以增加网络复杂度,以适应不同维度的转换需求。
摘要由CSDN通过智能技术生成

多维特征输入问题

糖尿病数据集,每个样本有8个特征,并以此进行二分类

                                        æç³å°¿çæ°æ®é

对原模型的改进:

单维度的逻辑回归模型为:

x(i)表示第i个样本,对于多维度,输入要变为8个维度的输入,因此模型应该变为:
 

其中x(i)n表示第i个样本的第n个维度,实际代码中是以矩阵进行运算的,因此:
 

则原式可以表示成:
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值