[Python] pytorch激活函数之Sigmoid函数介绍,使用场景和使用案例

本文介绍了Sigmoid函数的定义、优点、使用场景,如逻辑回归、神经网络训练和边缘检测等,并给出了一个使用PyTorch实现Sigmoid函数的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sigmoid函数介绍

Sigmoid函数是一种常用的激活函数,全称为Sigmoid函数。它将输入值映射到0和1之间,当输入值趋近于正无穷时,输出值趋近于1;当输入值趋近于负无穷时,输出值趋近于0。Sigmoid函数的表达式为:f(x) = 1 / (1 + e^-x)。

Sigmoid函数的优点是计算简单,可以作为线性回归模型的输出层激活函数。同时,Sigmoid函数的导数也很容易计算,这使得它在深度学习中得到了一定的应用。

Sigmoid函数使用场景

Sigmoid函数使用场景如下:

  1. 逻辑回归模型中的输出层,因为Sigmoid函数可以将输出值映射到0和1之间,用于表示样本属于某个类别的概率。
  2. 神经网络中的隐藏层和输出层,因为Sigmoid函数可以解决梯度消失问题,使得神经网络更容易训练。
  3. 图像处理中的边缘检测算法,因为Sigmoid函数可以将像素值映射到0和1之间,用于表示边缘的强度。
  4. 文本分类模型中的输出层,因为Sigmoid函数可以将输出值映射到0和1之间,用于表示样本属于某个类别的概率。

Sigmoid函数使用案例

import torch
import torch.nn as nn

# 定义一个Sigmoid激活函数
sigmoid = nn.Sigmoid()

# 创建一个随机张量,形状为(1, 10),表示一个样本,每个特征维度为10
input_tensor = torch.randn(1, 10)

# 将输入张量传递给Sigmoid激活函数
output_tensor = sigmoid(input_tensor)
# output_tensor = torch.sigmoid(input_tensor)

print("输入张量:", input_tensor)
print("Sigmoid激活后的输出张量:", output_tensor)

在这个示例中,我们首先导入了PyTorch库,并定义了一个Sigmoid激活函数。然后,我们创建了一个随机张量作为输入,将其传递给Sigmoid激活函数,得到了输出张量。最后,我们打印了输入张量和Sigmoid激活后的输出张量。 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老狼IT工作室

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值