Miller Rabin算法:大质数判断

问题概述:判断一个数n是不是质数(n<=10^18)

输入样例:                              对应输出:

7                                              Yes


费马小定理:如果p是质数,且a,p互质,那么a^(p-1)%p==1

Miller-Rabin算法的理论基础:如果p是一个大于2的质数,先将p-1表示成2^s*r的形式(r是奇数),令a是和n互素的任

整数,那么a^r%p==1或对某个j(0<=j<=s-1,j∈Z),等式a^(2^j*r)%p==±1成立


#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std;
#define LL long long
LL Multi(LL a, LL b, LL mod)
{
	LL ans = 0;
	a %= mod;
	while(b)
	{
		if(b%2==1)  ans = (ans+a)%mod, b--;
		else  a = (a+a)%mod, b /= 2;
	}
	return ans;
}

LL Pow(LL a, LL b, LL mod)
{
	LL ans = 1;
	a %= mod;
	while(b)
	{
		if(b&1)  ans = Multi(ans, a, mod), b--;
		else  a = Multi(a, a, mod), b /= 2;
	}
	return ans;
}

int Miller_Rabin(LL n)
{
	int i, j, k;
	LL a, x, y, mod;
	if(n==2)  return 1;
	if(n<2 || n%2==0)  return 0;
	k = 0, mod = n-1;
	while(mod%2==0)
	{
		k++;
		mod /= 2;
	}
	for(i=1;i<=10;i++)
	{
		a = rand()%(n-1)+1;			//随机生成一个小于n的正整数
		x = Pow(a, mod, n);
		y = 0;
		for(j=1;j<=k;j++)
		{
			y = Multi(x, x, n);
			if(y==1 && x!=1 && x!=n-1)
				return 0;
			x = y;
		}
		if(y!=1)
			return 0;
	}
	return 1;
}

int main(void)
{
	LL n;
	scanf("%I64d",&n);
	if(Miller_Rabin(n))
		printf("Yes\n");
	else
		printf("No\n");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值