现在有一块玻璃,是长方形的(w 毫米× h 毫米),现在要对他进行切割。
切割的方向有两种,横向和纵向。每一次切割之后就会有若干块玻璃被分成两块更小的玻璃。在切割之后玻璃不会被移动。
现在想知道每次切割之后面积最大的一块玻璃是多少。
样例解释:

对于第四次切割,下面四块玻璃的面积是一样大的。都是2。
Input
单组测试数据。 第一行有三个整数 w,h,n (2≤w,h≤200000, 1≤n≤200000),表示玻璃在横向上长w 毫米,纵向上长h 毫米,接下来有n次的切割。 接下来有n行输入,每一行描述一次切割。 输入的格式是H y 或 V x。 H y表示横向切割,切割线距离下边缘y毫米(1≤y≤h-1)。 V x表示纵向切割,切割线距离左边缘x毫米(1≤x≤w-1)。 输入保证不会有两次切割是一样的。
Output
对于每一次切割,输出所有玻璃中面积最大的是多少。
Input示例
样例输入1 4 3 4 H 2 V 2 V 3 V 1
Output示例
样例输出1 8 4 4 2
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1562
思路:倒过来处理,如果当前位置x是割线,那么
H[x].l表示该割线左面那条割线的位置,
H[x].r表示该割线右面那条割线的位置,
H[i].val表示该割线与左面那条割线之间的长度,
这样每次增加割线倒过来之后就相当于删除割线,
当然每次删除只要O(1)更新这条割线左右两边割线的值就好,每次答案就是max(H[i].val)*max(V[i].val),i∈[0,w(h)]
总复杂度:O(n)
#include<stdio.h>
#include<algorithm>
using namespace std;
#define LL long long
typedef struct
{
LL l, r;
LL val;
}Line;
typedef struct
{
char ch;
LL x;
}Res;
Line H[200005], L[200005];
Res s[200005];
LL fx[200005], fy[200005], ans[200005];
int main(void)
{
LL w, h, n, bx, by, i, now;
scanf("%lld%lld%lld", &w, &h, &n);
fx[0] = fx[h] = fy[0] = fy[w] = 1;
for(i=1;i<=n;i++)
{
scanf(" %c%lld", &s[i].ch, &s[i].x);
if(s[i].ch=='H') fx[s[i].x] = 1;
else fy[s[i].x] = 1;
}
bx = by = 0;
for(i=now=0;i<=h;i++)
{
if(fx[i]==1)
H[i].l = now, H[i].val = i-now, H[now].r = i, now = i, bx = max(bx, H[i].val);
}
H[h].r = h;
for(i=now=0;i<=w;i++)
{
if(fy[i]==1)
L[i].l = now, L[i].val = i-now, L[now].r = i, now = i, by = max(by, L[i].val);
}
L[w].r = w;
ans[n] = bx*by;
for(i=n;i>=2;i--)
{
if(s[i].ch=='H')
{
H[H[s[i].x].r].val = H[s[i].x].val+H[H[s[i].x].r].val;
H[H[s[i].x].l].r = H[s[i].x].r;
H[H[s[i].x].r].l = H[s[i].x].l;
bx = max(bx, H[H[s[i].x].r].val);
}
else
{
L[L[s[i].x].r].val = L[s[i].x].val+L[L[s[i].x].r].val;
L[L[s[i].x].l].r = L[s[i].x].r;
L[L[s[i].x].r].l = L[s[i].x].l;
by = max(by, L[L[s[i].x].r].val);
}
ans[i-1] = bx*by;
}
for(i=1;i<=n;i++)
printf("%lld\n", ans[i]);
return 0;
}