4001: [TJOI2015]概率论
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1033 Solved: 545
[ Submit][ Status][ Discuss]
Description
![]()

Input
输入一个正整数N,代表有根树的结点数
Output
输出这棵树期望的叶子节点数。要求误差小于1e-9
Sample Input
1
Sample Output
1.000000000
打表找规律
答案是n*(n+1)/(4n-2)
给定n个节点,能构成形状不同的二叉树种类为F[n]
其中F[x]是第x个卡特兰数
#include<stdio.h>
int main(void)
{
int n;
scanf("%d", &n);
printf("%.9f\n", 1.0*n*(n+1)/2/(2*n-1));
return 0;
}
TJOI2015概率论题解
本文提供了一道TJOI2015竞赛题目的解答方案,题目涉及概率论与组合数学,重点在于求解给定数量节点的有根树的期望叶子节点数,并给出了一种高效的计算方法。
826

被折叠的 条评论
为什么被折叠?



