线性代数学习笔记——n维向量

本文详细探讨了n维向量的概念,包括其线性运算如加法、数乘,并介绍了线性组合和线性表示。接着讨论了向量组的线性相关性,包括线性相关和线性无关的定义,以及极大无关组和秩的计算。此外,还阐述了线性方程组解的结构,包括解的存在性和唯一性。最后,涉及向量空间的概念,如子空间、基和维数,并简要提到了内积和正交性。
摘要由CSDN通过智能技术生成

n维向量的概念及其线性运算

n维向量的概念
  • 含有n个分量, 且只有一行或只有一列的矩阵称为n维向量
  • n维实列(或行)向量全体所构成的集合记为 R n R^n Rn
n维向量的线性运算
  • 对于列向量
    α = ( a 1 a 2 ⋮ a n ) , β = ( b 1 b 2 ⋮ b n ) , \alpha= \left( \begin{matrix} a_1\\a_2\\\vdots\\a_n \end{matrix} \right), \beta= \left( \begin{matrix} b_1\\b_2\\\vdots\\b_n \end{matrix} \right), α=a1a2an,β=b1b2bn,
    α , β \alpha,\beta α,β()为
    ( a 1 ± b 1 a 2 ± b 2 ⋮ a n ± b n ) \left( \begin{matrix} a_1\pm b_1\\ a_2\pm b_2\\ \vdots\\ a_n\pm b_n \end{matrix} \right) a1±b1a2±b2an±bn
    分别记作 α + β \alpha+\beta α+β。如果 k k k是数,则数 k k k与向量 α \alpha α数乘
    ( k a 1 k a 2 ⋮ k a n ) \left( \begin{matrix} ka_1\\ka_2\\\vdots\\ka_n \end{matrix} \right) ka1ka2kan
    记为 k α k\alpha kα加(减)法和数乘运算统称为n维向量的线性运算
  • n维向量的线性运算性质
    α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
    ( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
    α + 0 = α \alpha+0=\alpha α+0=α
    α + ( − α ) = 0 \alpha+(-\alpha)=0 α+(α)=0
    1 α = α 1\alpha=\alpha 1α=α
    k ( l α ) = ( k l ) α k(l\alpha)=(kl)\alpha k(lα)=(kl)α
    ( k + l ) α = k α + l α (k+l)\alpha=k\alpha+l\alpha (k+l)α=kα+lα
    k ( α + β ) = k α + k β k(\alpha+\beta)=k\alpha+k\beta k(α+β)=kα+kβ
线性组合和线性表示
  • α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn都是n维向量, k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks是数,则称向量
    k 1 α 1 + k 2 α 2 + ⋯ + k s α s k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s k1α1+k2α2++ksαs是向量组 α 1 + α 2 + ⋯ + α s \alpha_1+\alpha_2+\cdots+\alpha_s α1+α2++αs线性组合 k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks是这个线性组合的组合系数。如果n维向量 η \eta η可以写成 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs的线性组合,则称 η \eta η可以由 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性表示
  • 在n维向量的情形,一个向量是否可以由一个向量组线性表示取决于相应的线性方程组是否有解
  • 如果向量组 β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,,βt中每个向量都可以由向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性表示,称向量组 β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,,βt可以由向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性表示。如果向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,,βt可以互相线性表示,则称他们是等价
  • 向量组之间的等价关系具有反身性对称性传递性

向量组的线性相关性

线性相关和线性无关
  • α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs都是 n n n维向量,如果存在不全为零的数 k 1 , k 2 , ⋯   , k s k_1,k_2,\cdots,k_s k1,k2,,ks,使得
    k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 , k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=0, k1α1+k2α2++ksαs=0,则称向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性相关的。否则,称向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs线性无关
  • 常用结论:
     ①一个向量 α \alpha α是线性相关的当且仅当 α = 0 \alpha=0 α=0
     ②两个向量 α , β \alpha,\beta α,β是线性相关的当且仅当 α , β \alpha,\beta α,β的分量成比例
     ③如果向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs的某个部分组线性相关,则 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值