DAY9.
最近喜欢听加州旅馆
1.积分上限函数
积分上限函数和定积分以及之前的函数积分没有什么很大的区别,只不过是多了一个积分区域而已
积分上限函数型如:
∫ a x f ( x ) d x \int_a^xf(x)d_x ∫axf(x)dx
里面有一点需要注意,就是积分上限函数的求导
- ( ∫ a x f ( x ) d x ) ′ = f ( x ) (\int_a^x f(x)d_x )' = f(x) (∫axf(x)dx)′=f(x)
- ( ∫ a φ ( x ) f ( x ) d x ) ′ = f ( φ ( x ) ) ∗ φ ′ ( x ) (\int_a^{\varphi (x)} f(x)d_x)' = f(\varphi(x))*\varphi '(x) (∫aφ(x)f(x)dx)′=f(φ(x))∗φ′(x)
例题1
lim x → 0 ∫ 0 x cos t 2 d t x \lim_{x\to 0} \frac{\int_0^x \cos t^2 d_t}{x} limx→0x∫0xcost2dt
解:首先我们发现这个分式是0比0型,可以用洛必达定理
则原式
= lim x → 0 cos x 2 1 =\lim_{x\to 0} \frac{\cos x^2}{1} =limx→01cosx2
= 1 =1 =1
例题2
lim x → 0 ( ∫ 0 x e t 2 d t ) 2 ∫ 0 x t e 2 t 2 d t \lim_{x\to 0} \frac{(\int_0^x e^{t^2} d_t)^2}{\int_0^x te^{2t^2} d_t} limx→0∫0xte2t2dt(∫0xet2

本文深入讲解积分计算的各种方法,包括积分上限函数、基本定积分、换元法、分部积分、三角函数N次方积分及反常积分。通过具体例题解析,帮助读者掌握积分计算的精髓。
最低0.47元/天 解锁文章
1002

被折叠的 条评论
为什么被折叠?



