高等数学期末总复习DATY11.平面与空间直线、二元函数的极限、偏导数、全微分

DAY11.

布达佩大饭店

1.平面与空间直线

平面的两种方程

已知点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) 平面法向量(A,B,C)

  1. 平面的点法式方程:

A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0) = 0 A(xx0)+B(yy0)+C(zz0)=0

  1. 平面的一般方程:

A x + B y + C z + D = 0 Ax + By + Cz +D = 0 Ax+By+Cz+D=0

直线的方程

已知点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) 方向向量 ( m , n , p ) (m,n,p) (m,n,p)

  1. 点向式方程:

x − x 0 m = y − y 0 n = z − z 0 p \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} mxx0=nyy0=pzz0

  1. 参数式方程:
    { x = m t + x 0 y = n t + y 0 z = p t + z 0 \begin {cases} x = mt + x_0 \\ y = nt + y_0 \\ z = pt +z_0 \end{cases} x=mt+x0y=nt+y0z=pt+z0

  2. 一般方程:

{ A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin {cases} A_1x+B_1y+C_1z + D_1 = 0 \\ A_2x+B_2y+C_2z + D_2 = 0 \end {cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

例题1
求过点 ( 4 , − 1 , 3 ) (4,-1,3) (4,1,3),且与直线 x − 3 2 = y 1 = z − 1 5 \frac {x-3}{2} = \frac {y}{1} = \frac{z-1}{5} 2x3=1y=5z1 平行的直线方程

解:由题意可知,已知直线的方向向量为(2,1,5)

由于所求直线与已知直线平行所以两直线的方向向量相等

利用直线的点项式可以写出所求直线的方程为:

x − 4 2 = y + 1 1 = z − 3 5 \frac{x-4}{2} = \frac{y+1}{1} = \frac{z-3}{5} 2x4=1y+1=5z3

例题2

求过点(2,0,-3)且与已知直线 { x − 2 y + 4 z − 7 = 0 3 x + 5 y − 2 z + 1 = 0 \begin {cases} x-2y+4z -7 = 0 \\ 3x+5y-2z + 1 = 0 \end {cases} {x2y+4z7=03x+5y2z+1=0垂直的平面方程。

解:

所求平面与两直线都垂直 则所求平面的法向量 m ⃗ / / n ⃗ 1 ∗ n ⃗ 2 \vec m // \vec n_1 * \vec n_2 m //n 1n 2

由范德蒙行列式可求 n ⃗ 1 ∗ n ⃗ 2 \vec n_1 * \vec n_2 n 1n 2 = (-16,14,11)

则所求平面的点法式方程为 − 16 ( x − 2 ) + 14 ( y − 0 ) + 11 ( z + 3 ) = 0 -16(x-2)+14(y-0)+11(z+3) = 0 16(x2)+14(y0)+11(z+3)=0

2.二元函数的极限

其实和一元函数求极限没有很大的区别

特别注意二元函数连续性的运用

例题

lim ⁡ x , y → 0 , 1 1 − x y x 2 + y 2 \lim_{x,y \to 0,1} \frac{1-xy}{x^2+y^2} limx,y0,1x2+y21xy

解:

因为当x = 0、y = 1的时候,分式的分母不为0 则该二元函数连续

所以

lim ⁡ x , y → 0 , 1 1 − x y x 2 + y 2 \lim_{x,y \to 0,1} \frac{1-xy}{x^2+y^2} limx,y0,1x2+y21xy = 1 − x y x 2 + y 2 ∣ x → 0 y → 1 = 1 \frac{1-xy}{x^2 + y^2}|_{x\to 0} ^{y \to 1} = 1 x2+y21xyx0y1=1

3.偏导数

偏导数就是在对x或者y进行积分的时候,把另一个变量看作常数的再积分,定义很简单,不骜述,且在第四点全微分中会体现出过程

4.全微分

全微分有点类似于链式求导

一般的方式就是:

z = f ( x , y ) ⇒ d z = ∂ z ∂ x d x + ∂ z ∂ y d y z = f(x,y) \Rightarrow dz = \frac{\partial z}{\partial x} d_x +\frac{\partial z}{\partial y}d_y z=f(x,y)dz=xzdx+yzdy

例题
z = x y + x y z = xy +\frac{x}{y} z=xy+yx的全微分

∂ z ∂ x = y + 1 y \frac{\partial z}{\partial x} = y + \frac{1}{y} xz=y+y1

∂ z ∂ y = x − x y 2 \frac{\partial z}{\partial y} = x - \frac{x}{y^2} yz=xy2x

d z = ( y + 1 y ) d x + ( x − x y 2 ) d y dz = (y + \frac{1}{y})d_x + (x - \frac{x}{y^2})d_y dz=(y+y1)dx+(xy2x)dy

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值