03概率论与数理统计笔记 多维随机变量——基于《概率论与数理统计》许忠好

多维随机变量及其联合分布

定义与性质

X Y是定义在概率空间(Ω,𝓕,P)的随机变量,称(X,Y)为二维随机变量
类似的 若X1……Xd是d个定义在概率空间(Ω,𝓕,P)上的随机变量
称(X1,……,Xd)是d维随机变量

F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y) = P(X≤x,Y≤y) F(x,y)=P(Xx,Yy)

联合分布函数的性质
1)单调性:
F(x,y)关于每个分量单调不降

2)有界性:0≤F(x,y)≤1, F(∞,∞) = 1

3)右连续性:F(x,y)分别关于x,y右连续

4)非负性
a1<b1, a2 < b2时候
F ( b 1 , b 2 ) − F ( b 1 , a 2 ) − F ( a 1 , b 2 ) + F ( a 1 , a 2 ) ≥ 0 F(b_1,b_2)-F(b_1,a_2)-F(a_1,b_2)+F(a_1,a_2)≥0 F(b1,b2)F(b1,a2)F(a1,b2)+F(a1,a2)0

二维离散型分布

定义:
随机变量(X,Y)取值个数为有限对or可列对,称(X,Y)是二维离散型随机变量

分布列
(X,Y)取值于{(x_i,y_i):i,j = 1,2……}
p i j = P ( X = x i , Y = y i ) p_{ij} = P(X = x_i,Y= y_i) pij=P(X=xi,Y=yi)
为X,Y的联合分布列

性质
1)非负性: p i j ≥ 0 p_{ij} ≥0 pij0
2)正则性: ∑ i , j p i , j = 1 \sum_{i,j}p_{i,j}=1 i,jpi,j=1

定理
P ( ( X , Y ) ∈ D ) = ∑ ( i , j ) : ( x i , y j ) ∈ D P((X,Y)∈D) = \sum_{(i,j):(x_i,y_j)∈D} P((X,Y)D)=(i,j):(xi,yj)D

二维连续性分布

F ( x , y ) = ∬ D x y p ( u , v ) d u d v F(x,y) = \iint_{D_{xy}}p(u,v)dudv F(x,y)=Dxyp(u,v)dudv
p(x,y)为(X,Y)的联合概率密度函数

性质:
1)非负性
p(x,y)≥0
2)正则性
∬ R 2 p ( x , y ) d x d y = 1 \iint_{R^2}p(x,y)dxdy = 1 R2p(x,y)dxdy=1

定理
P ( ( X , Y ) ∈ D ) = ∬ D p ( x , y ) d x d y P((X,Y)∈D)=\iint_D p(x,y)dxdy P((X,Y)D)=Dp(x,y)dxdy

已知分布求概率

P ( ( X , Y ) ∈ D ) = { ∑ ( i , j ) : ( x i , y j ) ∈ D p i j 离 散 ∬ D p ( x , y ) d x d y 连 续 P((X,Y)∈D)= \left\{ \begin{aligned} \sum_{(i,j):(x_i,y_j)∈D}p_{ij}& &离散 \\ \iint_D p(x,y)dxdy & & 连续\\ \end{aligned} \right. P((X,Y)D)=(i,j):(xi,yj)DpijDp(x,y)dxdy

特殊多维分布

1 多项分布
重复做同一随机试验,每次实验有r个结果,A1……Ar。记P(A_i) = p_i,i = 1……r,记X_i为n次重复独立实验中A_i出现的次数

P ( X 1 = n 1 , … … X r = n r ) = { n ! p 1 n 1 … p r n r n 1 ! … n r ! ∑ i = 1 r n i = n 0 其 他 P(X_1=n_1, ……X_r=n_r)= \left\{ \begin{aligned} \frac{n!p_1^{n1}…p_r^{nr}}{n_1!…n_r!}& &\sum^r_{i=1}n_i=n \\ 0 & & 其他\\ \end{aligned} \right. P(X1=n1,Xr=nr)=n1!nr!n!p1n1prnr0i=1rni=n

2 多维超几何分布
口袋中有N个球,分成r类,第i种有N_i只N1+……+Nr = N,从种任取n个,记Xi是n个球第i种球的个数
P ( X 1 = n 1 , … … X r = n r ) = { C N 1 n 1 … C N r n r C N n ∑ i = 1 r n i = n 0 其 他 P(X_1=n_1, ……X_r=n_r)= \left\{ \begin{aligned} \frac{C_{N_1}^{n_1}…C^{n_r}_{N_r}}{C_N^n}& &\sum^r_{i=1}n_i=n \\ 0 & & 其他\\ \end{aligned} \right. P(X1=n1,Xr=nr)=CNnCN1n1CNrnr0i=1rni=n

3 二位均匀分布
p ( x , y ) = { 1 S D ( x , y ) ∈ D 0 其 他 p(x,y)= \left\{ \begin{aligned} \frac{1}{S_D}& &(x,y)∈D\\ 0 & & 其他\\ \end{aligned} \right. p(x,y)=SD10(x,y)D

4 二维正态分布
p ( x , y ) = 1 2 π σ 1 σ 2 c e x p { − 1 2 c 2 ( a 2 + b 2 − 2 ρ a b ) } p(x,y) = \frac{1}{2\pi\sigma_1\sigma_2 c}exp\{-\frac{1}{2c^2}(a^2+b^2-2\rho ab)\} p(x,y)=2πσ1σ2c1exp{2c21(a2+b22ρab)}
其中
a = x − μ 1 σ 1 b = y − μ 2 σ 2 c = 1 − ρ 2 a=\frac{x-\mu_1}{\sigma_1}\quad b = \frac{y-\mu_2}{\sigma_2}\quad c = \sqrt {1-\rho^2} a=σ1xμ1b=σ2yμ2c=1ρ2
( X , Y ) ∼ N ( μ 1 , σ 1 2 , μ 2 , σ 2 2 , ρ ) (X,Y)\sim N(\mu_1,\sigma_1^2,\mu_2,\sigma_2^2,\rho) (X,Y)N(μ1,σ12,μ2,σ22,ρ)

边际分布

定义
F X ( x ) = F ( x , ∞ ) = lim ⁡ y → ∞ F ( x , y ) F Y ( y ) = F ( ∞ , y ) = lim ⁡ y → ∞ F ( x , y ) F_X(x) = F(x,∞) = \lim_{y\rightarrow∞}F(x,y)\\ F_Y(y) = F(∞,y) = \lim_{y\rightarrow∞}F(x,y) FX(x)=F(x,=ylimF(x,y)FY(y)=F(,y=ylimF(x,y)

边际分布率

p i j = P ( X = x i , Y = y i ) p_{ij} = P(X = x_i,Y= y_i) pij=P(X=xi,Y=yi)
p i = P ( X = x i ) = ∑ j = 1 ∞ p i j = p i p_i = P(X=x_i) = \sum^∞_{j = 1}p_{ij}=p_i pi=P(X=xi)=j=1pij=pi
p j = P ( Y = y j ) = ∑ i = 1 ∞ p i j = p j p_j = P(Y=y_j) = \sum^∞_{i = 1}p_{ij}=p_j pj=P(Y=yj)=i=1pij=pj

边际概率密度函数

X的概率密度函数
p X ( x ) = ∫ − ∞ + ∞ p ( x , y ) d y p_X(x)=\int_{-∞}^{+∞}p(x,y)dy pX(x)=+p(x,y)dy
Y的概率密度函数
p Y ( y ) = ∫ − ∞ + ∞ p ( x , y ) d x p_Y(y)=\int_{-∞}^{+∞}p(x,y)dx pY(y)=+p(x,y)dx

定理
设(X,Y)服从二维正态分布N(μ1,σ1²;μ2,σ2²,ρ)
则X服从正态分布N(μ1,σ1²)
Y服从正态分布N(μ2,σ2²)

随机变量的独立性

相互独立
若联合分布函数等于边际分布函数的乘积,则X和Y相互独立
F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)
对离散型就是pij = pi ✖ pj

定理
设(X,Y)服从二维正态分布N(μ1,σ1²;μ2,σ2²,ρ)
则X和Y独立当且仅当ρ = 0

随机变量函数的分布

设随机变量(X,Y)具有分布列{pij,i,j = 1.2……}或概率密度函数p(x,y)
则随机变量Z=g(X,Y)的分布函数为
F Z ( z ) = P ( ( X , Y ) ∈ D z ) { ∑ ( i , j ) : ( x i , y j ) ∈ D z p i j 离 散 ∬ D t p ( x , y ) d x d y 连 续 F_Z(z)=P((X,Y)∈D_z) \left\{ \begin{aligned} \sum_{(i,j):(x_i,y _j)∈D_z}p_{ij}& &离散 \\ \iint_{D_t}p(x,y)dxdy & & 连续\\ \end{aligned} \right. FZ(z)=P((X,Y)Dz)(i,j):(xi,yj)DzpijDtp(x,y)dxdy

离散型

二维离散随机变量(X,Y)具有分布列{pij,i,j = 1,2……}随机变量Z = g(X,Y)所有可能取值为{z_k,k = 1……}
Z的分布列
P ( Z = z k ) = ∑ ( i , j ) : g ( x i , y j ) = z k p i j P(Z = z_k) = \sum_{(i,j):g(x_i,y_j)=z_k}p_{ij} P(Z=zk)=(i,j):g(xi,yj)=zkpij

卷积公式
随机变量(X,Y)的联合分布列
pij = P(X = xi, Y = yj)
Z= X+Y的分布列
P ( Z = z k ) = ∑ i P ( X = x i , Y = z k − x i ) = ∑ i P ( X = z k − y j , Y = y j ) P(Z = z_k) = \sum_iP(X =x_i,Y=z_k-x_i) = \sum_iP(X =z_k - y_j,Y=y_j) P(Z=zk)=iP(X=xi,Y=zkxi)=iP(X=zkyj,Y=yj)

定义
若某类概率分布的独立随机变量和分布仍是此类分布,称此类分布具有可加性

定理:
①二项分布可加性
X服从二项分布b(n,p) Y服从b(m,p)
则随机变量Z = X + Y服从二项分布 b(n+m,p)

②泊松分布可加性
X服从泊松分布P(λ1) Y服从P(λ2)
则随机变量Z = X + Y服从泊松分布(λ1+λ2)

连续型

定理
设随机变量X概率密度函数为P_X(x) y = f(x)是严格单调函数,其反函数x = h(y)右连续导函数,则随机变量Y = f(X) 概率密度函数为
p Y ( y ) = { p X ( h ( y ) ) ∣ h ′ ( y ) ∣ a < y < b 0 其 他 p_Y(y)= \left\{ \begin{aligned} p_X(h(y))|h^{'}(y)|& &a<y<b \\ 0 \quad & & 其他\\ \end{aligned} \right. pY(y)={pX(h(y))h(y)0a<y<b
a = min{f(-∞),f(+∞)} b = max{f(-∞),f(+∞)}

正态分布的线性不变性
X服从正态分布N(μ,σ²) a不为0 Y = aX + b服从N(aμ+b,a²μ²)
推论 X ∼ N ( μ , σ ² ) X − μ σ   ∼ N ( 0 , 1 ) X\sim N(μ,σ²) \quad\frac{X - μ} {σ} ~\sim N(0,1) XNμσ²σXμ N01

定理
随机变量X服从Gamma分布Ga(α,λ) k>0则随机变量kX服从Gamma分布Ga(α,λ/k)

定理
设随机变量X的分布函数F(x)是严格单调增的连续函数,则随机变量F(X)服从均匀分布U(0,1)

定理
随机变量X1……Xn相互独立,分布函数分别为F_i(x)和p_i(x)
Y = max(X1……Xn)
Z = min(X1……Xn)
F Y ( y ) = ∏ i = 1 n F i ( y ) F Z ( z ) = 1 − ∏ i = 1 n ( 1 − F i ( z ) ) F_Y(y) = \prod_{i=1}^nF_i(y)\quad F_Z(z) =1- \prod_{i=1}^n(1-F_i(z)) FY(y)=i=1nFi(y)FZ(z)=1i=1n(1Fi(z))

定理
Z=tX+Y
p Z ( z ) = ∫ - ∞ ∞ p ( x , z − t x ) d x p_Z(z) = \int^∞_{-∞}p(x,z-tx)dx pZ(z)=p(x,ztx)dx

卷积公式
X,Y相互独立
Z=X+Y
p Z ( z ) = ∫ - ∞ ∞ p X ( x ) p Y ( z − x ) d x = ∫ - ∞ ∞ p X ( z − y ) p Y ( y ) d y p_Z(z) = \int^∞_{-∞}p_X(x)p_Y(z-x)dx = \int^∞_{-∞}p_X(z-y)p_Y(y)dy pZ(z)=pX(x)pY(zx)dx=pX(zy)pY(y)dy

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值