集成算法理论(随机森林,AdaBoost,Xgboost,Stacking模型)

本文介绍了集成学习中的三种主要方法:Bagging(随机森林)通过并行训练多个随机选择特征的分类器,Boosting(如AdaBoost)通过调整数据权重以优化弱分类器,Stacking则混合多种模型进行多层次预测。这些方法旨在提高机器学习模型的性能和泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、前言

二、Bagging模型

三、Boosting模型

四、Stacking模型

五、总结


一、前言

        集成算法(Ensemble learning)

        集成算法一般考虑树模型,KNN就不太适合

        目的:让机器学习效果更好,单个不好,一起干,三个诸葛亮

        Bagging:训练多个分类器取平均,f(x)=\frac{1}{M}\sum_{m=1}^{M}f_m(x),其中M表示分类器的个数,f_m(x)表示单个训练器。

        Boosting:从弱学习器开始加强,通过加权的方式来进行训练

                公式:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值