目录
一、前言
集成算法(Ensemble learning)
集成算法一般考虑树模型,KNN就不太适合
目的:让机器学习效果更好,单个不好,一起干,三个诸葛亮
Bagging:训练多个分类器取平均,,其中
表示分类器的个数,
表示单个训练器。
Boosting:从弱学习器开始加强,通过加权的方式来进行训练
公式:
目录
集成算法(Ensemble learning)
集成算法一般考虑树模型,KNN就不太适合
目的:让机器学习效果更好,单个不好,一起干,三个诸葛亮
Bagging:训练多个分类器取平均,,其中
表示分类器的个数,
表示单个训练器。
Boosting:从弱学习器开始加强,通过加权的方式来进行训练
公式: