用户行为数据分析

用户行为数据分析

基本概念

定义用户行为

用户在你的产品内进行各种操作产生的数据

通常有三种最基本的用户行为,分别是:访问、浏览和行 为事件。每个访问事件可以由多个浏览事件和多个点击事件构成

  • 访问
  • 浏览
  • 行为

用户行为数据的相关概念

  • 时间(when)
  • 地点(where)
  • 人物(who)
  • 交互(how)
  • 交互内容(what)

分析指标

  • 浏览量(pv)
  • 访客(uv)
  • 注册量
  • 转化率
  • 留存率
  • 使用时长
  • 使用频率

1、用户行为数据分析概论

为什么要做用户分析

  • 确定用户画像

  • 保留优质功能

  • 关注用户流失

    • 怎么流失
    • 为什么流失
    • 在哪里流失
  • 还能做什么?

    当你有了很多用户行为数据、定义事件之后,你可以把用户行为数据做成一个按小时、按天,或者按用户级别、事件级别拆分的一个表。

    这个表用来做什么?

    一个是知道用户最简单事件,比如登录或者是购买,也可以知道哪些是优质用户、哪些是即将流失的客户,这样的数据每天或每个小时都能看到。

应用场景

  • 拉新

  • 转化

    • 转化漏斗

      以注册转化漏斗为例,第一步我们要知道网页上有哪些注册入口,很多网站的注册入口不只一个,需要定义每个事件;我们还想知道下一步有多少人、多少百分比的人点击了注册按钮、多少人打开了验证页;多少人登录了,多少人完成了整个完整的注册。

      期间每一步都会有用户流失,漏斗做完后,我们就可以直观看到,每个环节的流失率。

      后续也能针对性的对流失度高的功能进行调整

  • 促活

    还有一个是用户使用产品的流畅度。我们可以分析具体用户行为,比如访问时长,在哪个页面上停留的时间特别长,在 App 上尤为明显。再有是完善用户画像,拿用户行为数据分析做用户画像是比较准的。

  • 留存

    用户流失不是说一下子就流失了,一些细微行为,就能预示他将来会流失。

    如果有了用户行为数据,最简单的就是看用户使用行为有没有下降、哪些行为下降、哪些用户用得特别好等,以此来维护用户关系。

  • 变现

如何采集和分析

  • 埋点

    • 七大步骤

      • 1、确定场景或目标

        确定一个场景,或者一个目标。比如,我们发现很多用户访问了注册页面,但是最终完成注册的很少。那么我们的目标就是提高注册转化率,了解为什么用户没有完成注册,是哪一个步骤挡住用户了。

    - 2、数据采集规划

      思考哪些数据我们需要了解,以帮助我们实现这个目标。比如对于之前的目标,我们需要拆解从进入注册页面到完成注册的每一个步骤的数据,每一次输入的数据,同时,还有完成或者未完成这些步骤的人的特征数据。


    - 3、埋点采集数据

      我们需要确定谁来负责收集数据,一般是工程师,有些企业有专门的数据工程师,负责埋点采集数据。


    - 4、数据评估与分析

      收集上来的数据质量如何,又该如何分析呢?谁来分析呢?


    - 5、给出优化方案

      发现问题后,怎么给出解决方案。比如,是否需要在设计上改进,或者是否是工程上的 bug?产品不合理?


    - 6、实施优化方案

      谁负责实现解决方案,需要确定方案的实施责任人。


    - 7、评估解决方案效果

      进行下一轮数据采集和分析,回到第一步继续迭代。


- 缺点

    - 依赖经验导向

      依赖人的经验和直觉,采集哪些指标和维度的数据,这
      都需要提前想好。不是说经验和直觉不好,而是有时我们自己也不知道到底什么是好的。经验反而会成为一个先入为主的负担,我们需要用数据来测试来证明。


    - 沟通成本高

      一个有效的分析结果,依赖于数据的完整性和完备性。在企业里不少的吐槽都跟数据格式有关,比如 “连日志格式都统一不了,更别提后续分析了“。这不是具体人的问题,更多是协作沟通的问题。参与人多,产品经理、分析师、工程师、运营等等,每个人的专业领域又各不相同,出现误解太正常了。


    - 需大量时间做数据清洗

      工作大部分时间在做数据清洗,只有百分之二十时间在做真正有业务价值的事情


    - 数据漏采错采

      很多时候,埋点监测代码上线后,发现数据采集错了或者漏了;修正后,又得重新跑一遍流程,这样一个星期两个星期又过去了。这也是为什么数据分析工作如此耗时,一般以月计的原因。
  • 自动化/无埋点方案
    • 方案
      • SDK
      • 分析云saas
    • 成本
    • 优势
      • 效率高
      • 发版成本低,app发版上线不影响数据自动采集
  • 双模式

2、数据驱动增长的基础

怎么挣钱

  • 用户增长公式

    怎样才算挣钱呢? 需要满足:平均每个用户创造的价值 ≥ 获取一个用户的成本。这个「成本」不仅包含推广拉新的成本,也包括团队、服务器、带宽等运营成本,最终平摊到每个用户头上。

  • 用户获取成本

  • 单用户商业价值

    单个用户创造的商业价值等于单个用户每日收入乘以 用户平均生命周期活跃天数

产品定位

数据信心

  • 为什么我们容易不信任数据?

    • 对产品而言

      对于传统的产品经理而言,数据往往被称为统计需求,没有功能重要,因此会被放到需求模板的最后面。实际需求开发的时候,如果时间不够用,往往首先牺牲的就是统计需求

- 对开发而言

  对于开发者而言,他们往往非常在意需求的技术含量,希望以此提升自己的能力。而数据埋点上报之类的都是极为繁琐而又缺乏技术含量的工作,不受开发者待见


- 对测试而言

  对于数据需求的测试而言,数据看不见摸不着,逻辑不清晰。如果没有好的工具,这对测试者的要求很高。

  更重要的是,一旦放松警惕,数据在后续的开发中极易被改错,而测试者完全无法察觉。上述这些困难,会直接导致我们逐步陷入数据恶化的深渊。
  • 如何建立数据信心

    • 降低错误率

      首先,你数据别总错是吧,错的多了谈何信任,这一点我们后面来说。如果有一些细节出错不可避免,那一定要找到问题解释清楚。

- 问题跟进

  我和数据产品经理一再强调,一旦别人发现某个数据有问题,你查清楚问题之后一定要跟人家解释清楚。这个数据为什么错?错在哪里?能不能修复?能修复的话什么时候能好?不能修复的话要怎么办,有什么替代方案?绝对不能说:哦,这个数据的确有问题,我们来修,后面就没有下文了,或者只是简单告知人家这个数已经修好了。要让别人非常清晰的认识到,即使数据有错,情况也完全是在我们掌控之中,态度决定信任!


- 技术角度

  对于核心数据最好一定要埋点,好处在于你可以清晰的知道你采集的到底是什么数据,开发的埋点代码也要明确的出现在相关功能所处的代码段中,误操作的概率相对较低


- 团队角度

  互联网行业团队经常会有这么几个角色:产品,运营,开发,设计,测试,商务。实际上这些角色中很难有一个角色对数据完全负责。

  建议可以从增加一个数据产品经理开始,而不是一开始就搭建一整套数据团队。尤其不建议这个数据团队游离于产品研发团队以外,变成类似于运维这样的一个支撑团队。

适合自己的增长策略

你们有没有关注过自己的数据,时间拉长到 2-3 年或者更长,会不会发现类似这样的情况? 你的增长并不是一下子上去的,如果这样的话很快就成为独角兽了。但是99% 的企业和团队,你们的增长可能是这样的,一个波峰一个波峰地增长;每次增长完了,很快就会遇到瓶颈。

这个时候,你需要去重新认知、分析下一步怎么去做。这个瓶颈有时候会很 长,很多公司可能一个波谷就再也没有起来了。

  • 认知行业定位

    你要搞清楚,到底为什么增长,要去哪里

    你的企业未来想成为什么样的一家公司?到底是成为一家用户体量很大、但质量并不一定 OK 的公司,还是成为一家把 事情做精的公司?这是用户增长所要考虑的第一个认知。

  • 认知用户诉求

    • 用户主动
    • 企业主动
  • 认知用户构成

    既愿意在你这边花钱有愿意在你这里花时间的,一定是最棒的用户。 不愿意花钱又不愿意花时间,但是他来了,是你未来的潜力。 很愿意花钱但是没时间,挺有钱的。 很愿意花时间但是没钱,这是大部分 App 重要用户所在的起点,叫忠实粉丝。 忠实粉丝一直很喜欢你,总有一天你要从那口带里掏一点钱,大概就是这样一个过程。

- 用户花了多少钱
- 用户花了多少时间
  • 阶段目标

    Sean Ellis《增长黑客》这本书大家看过吗?书里面有一个调研很有意思, 叫做产品的不可或缺性调研。如果这个产品明天没法用了,你的用户会怎么 来回答你?用户到底是说,我好失望啊,还是说有点失望,还是说无所谓, 还是说早就不用了。 你们有没有调研这个问题?我们有调研过,很刺激。那个调研上线了以后, 数据不行你要下线掉的。最后我们没有下掉,因为我们做到了。 Sean Ellis 说如果有 40% 甚至更多的用户说他会很失望,说明你的产品已 经具备了一定行业里的不可获缺性。这个时候再去做增长,比你之前去做增 长会爽很多,而且流失率很低,用户数量和活跃度会一直往上走。

增长基石

  • 产品和创新

  • 数据和实验

    增长实验有几个类型:文案实验、功能试验、设计实验和路径实验。 上图是我们自己做过的一个很小的文案实验。Acorns 是一个投资软件,我们希望用户使用定期投资这样的功能。于是我们把所有进来的人分为三组, 每个组给他们不同的文案。 每天 5 块,每周 30 块,每月 150 块。实际上数额是一样的,但是转化率差别很大。A 的转化率是 30%,B 是 11%,C 是 7%。这就是一个行为经济学的测试,所以大家一定要重视文案。

- 方案实验
- 功能实验
- 设计实验
- 路径实验
  • 团队和文化

    我们刚才谈了产品和创新,数据和实验,但是这些事情离开了人都是不可能发生的。从我自己的经验来看也是这样,增长的基石是团队和文化,只有在良好的氛围里,你才能推动很多的事情。

3、渠道流量分析

目的

  • ROI(return on investment)投资回收率

评估体系

  • 渠道规模量化指标
  • 拉新能力量化指标
  • 渠道质量量化指标
    • Level 1
    • Level 2
    • Level 3

4、精细化用户运营

增长运营

  • 流量运营
  • 用户运营
  • 产品运营

B2B用户增长

  • 与C端增长差异
    • 精细化程度不同
    • 信息化阶段不同
    • 增长机制不同
    • 商业定位不同
  • 用户增长的演进
    • 单点突破
    • 平台导流、用户补贴
    • 内容营销、社交传播
    • 超级会员/任务引导体系

5、产品迭代和增长

本章将和大家分享如何借助用户行为数据分析来进行产品设计、迭代优化,从产品层面驱动用户增长

迭代

  • 终级目的

    • 提高用户体验
    • 促进用户增长
  • 案例

    • 手机银行

      在智能手机出现之前,我们只能用 Windows 电脑的 IE 浏览器来访问电子银行,而且必须要插入 U 盾、下载安装安全控件,才能访问电子银行。这个过程中,你的 IE 浏览器还必须是老版本的,最新版本的IE 浏览器因为安全问题经常不支持。所以,电子银行的客户满意度非常低,用户体验极差。

      但是!现在呢?

  • 如何衡量用户体验?用户体验模型

    • PULSE模型

      举个例子:响应时间,用户修改密码是不是能很快响应和生效;延迟,系统转账能否实时到账,如果迟迟不到账的话用户就会很担心。

    - Page view(页面浏览量)
    - Uptime(响应时间)
    - Latency(延迟)
    - Seven days active user(7 天活跃用户数)
    - Earning(收益)

- HEART模型

    - Happiness 代表用户满意度

      我们常用NPS 调研问卷来完成,问用户「你是否愿意把我们的产品推荐给朋友」,我们可以用这种方式来完成我们的调研。


    - Engagement 代表用户的活跃度和参与度

      比如用户的使用频次、粘度、访问深度。「用户访问深度」我们可以用数据来监测,即用户在一个会话中浏览了多少个页面。


    - Adoption 

      是指用户接受产品各个版本、各个功能的情况。我们常用
      产品/版本/功能使用人数占比来衡量用户的接受程度。


    - Retention 

      指产品的留存,分析用户是不是持续地、反复地使用你
      的产品。


    - Task Success 衡量关键任务的完成状况。

      比如修改密码,我们希望用户尽可能简单地完成,产品的摩擦越小,转化率越高。我们可以通过转化漏斗来监测和分析这个动作。
  • 产品迭代要素
    • 改版前后比较
    • 绝对指标和相对指标
    • 路径转化率
    • 功能使用占比
    • 错误率
    • 功能留存

增长

  • 留存

    如果产品不能留住用户,我们的产品就像一个镂空的篮子,倒 入的水越多流失的也越多,这意味着我们的产品是无法实现可持续增长的。想要实现产品的可持续增长,用户的留存就是非常重要的一个指标。

- 降低新用户上手成本

  能否让用户在第一次使用产品时就能迅速低成本地感知到产品价值,决定了新用户的激活率


- 激活目标
- 长期阶段
  • 增长团队

    • 初创公司为什么需要增长团队

      初创公司为什么需要增长团队呢?因为所有的大公司、所有的独角兽、所有的超级巨头,都是由一个小公司或小团队增长而来的。生物学上我们常常听到两个词:裂变、进化。其实在互联网领域中,在座的几百个团队,你们都希望你们的用户能够快速裂变,一带十、十带百,产生快速的用户增长。你们也希望在产品迭代当中让产品进化地越来越好,能够更明白、更了解用户的需求,能够产生更多的营收。所以说:裂变和进化放在现在的互联网创业领域中,其实就是一种增长(Growth)的概念。

- 增长的概念已经不局限于互联网产品

  对于我们来说,如果想提升下载转化和注册转化,我们可能会专注于完善我们的落地页,让更多的用户点击下载;可能会提升商店宣传图片的品质,让用户明显感知到这是一个什么样的产品、有什么样的功能。

  之后注册页需要关注注册 UI,我的按纽摆放、注册页的视频,都有可能影响转化率的提升。由此整个文案的落地、交互、宣传,给用户带来了一个整体定位和品牌感知,最终都引导到激活环节;


- 初创公司如何搭建增长团队

  做增长这件事情是创始人 CEO 主导的,还是只是在跟风模仿。普遍的困惑在于:如果增长工作没有得到公司层面有力的支持,就很容易被边缘化,或者说工作效果大大打折扣。只有整个公司都有增长意识,我们建立了一个大家都可以交流的语言,才能很好协作。目前看来,让大家都能理解的语言一定是数据。

  接下来就是建立一个数据目标,大概什么阶段完成什么样的数据增长。比如说一个月内完成留存率增长 2% 的目标。有目标之后才能建立团队,团队才能有明确的分工。因此才能去招聘人,这一定是个需要先想清楚的事情。


    - 意识先行

      在团队中建立增长意识


    - 工作方式

      在用数据指导业务增长的过程中,我们需要不断地总结,做每件事情都要问一下 “why”。这个想法是否正确?和同事的协作有成果吗?
      到了成果总结阶段,一定要给团队相应的激励。
      最后就是数据培训。目前我们不仅对增长团队,还对运营、产品、市场、技术进行全面的数据培训。我们始终强调:要让数据成为团队共同的语言,这一点是非常重要的。


    - 组织架构

      1、部门与部门界限模糊,不能说我是运营我只负责和用户相关的,我是市场只负责外部的新增用户,这样的话永远没有办法实现真正的增长。
      2、第二,以目标为导向。这个要非常灵活,以项目搭团队;项目才是一个团队,一个部门并不是一个团队。
      3、人人都是增长黑客。之前有一本书叫《人人都是产品经理》,培养每个人有产品意识;现在团队当中,我们培养一个“人人都是增长黑客”的概念。在数据后台系统中开放我们的数据权限,让大家可以平等、共同、快捷的交流
  • 增长体系确定

    • 确定优先级,公司当前最重要的事是什么?

      做增长之前,需要了解公司当前最重要的事情是什么。很多大公司内部孵化创新项目,最重要的一点在于是否找准了产品的定位,给目前用户提供了精准的杀手级服务、解决了他的痛点。这个时候,一些数据分析的工作,比如提升转化率反而优先级不高。

- 对增长的认知-通过实践不断迭代升级

  很多企业都想把增长做的很好,但是推动这个过程需要付出很大的艰辛。
  这个过程就像一条曲线,有涨有跌。刚开始还有一些增长,但是很快会遇到一些挫折,可能是转化率很低需要调整,也可能是团队核心成员离开,然后你的增长路径就会发生偏离。这条路很漫长,大家需要有耐心不断探索。


- 增长体系的搭建-节奏比速度更重要

  罗马不是一天建成的,搭建增长体系也需要循序渐进的,如果你一开始就想迅速地搭一个很宏大的架子,反而会有不好的效果。

  我建议从一个点慢慢切入,一步步循序渐进。而且就如我上面讲到的,团队对增长的认知是通过一个一个案例的收获不断成长的,你希望一下子达到大而全,其实是非常困难的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值