判断凸多边形(向量叉积运用)

469. 凸多边形 - 力扣(LeetCode)

给定 X-Y 平面上的一组点 points ,其中 points[i] = [xi, yi] 。这些点按顺序连成一个多边形。

如果该多边形为 凸 多边形(凸多边形的定义)则返回 true ,否则返回 false 。

你可以假设由给定点构成的多边形总是一个 简单的多边形(简单多边形的定义)。换句话说,我们要保证每个顶点处恰好是两条边的汇合点,并且这些边 互不相交 。

示例 1:

输入: points = [[0,0],[0,5],[5,5],[5,0]]
输出: true


示例 2:

输入: points = [[0,0],[0,10],[10,10],[10,0],[5,5]]
输出: false

提示:

3 <= points.length <= 104
points[i].length == 2
-104 <= xi, yi <= 104
所有点都 不同

根据叉积,右手螺旋定则,每两次的叉乘结果都应该指向同一个方向,也就是符号要相同,可以很轻松的判断是否为凸多边形(自己用右手举两个例子试一试就可以了),注意数据范围,连续4个int相乘是会爆掉范围的,所以用long long。

class Solution {
public:
    bool isConvex(vector<vector<int>>& points) {
        long long curCrossVector=0;
        long long preCrossVector=0;
        int n=points.size();
        for(int i=0;i<n;i++){
            long long x1=points[(i+1)%n][0]-points[i][0];
            long long y1=points[(i+1)%n][1]-points[i][1];
            long long x2=points[(i+2)%n][0]-points[i][0];
            long long y2=points[(i+2)%n][1]-points[i][1];

            long long curCrossVector=x1*y2-x2*y1;
            //两向量不平行
            if(curCrossVector!=0){
                if(curCrossVector*preCrossVector<0){
                    return false;
                }else{
                    preCrossVector=curCrossVector;
                }
            }
        }
        return true;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值