【机器学习基础】理解为什么机器可以学习3——VC理论

本文深入探讨了机器学习中的VC理论,解释了如何通过VC维衡量假设空间的复杂度。介绍了打散数据集合的概念,包括成长函数、Break Point和Bounding Function,阐述了VC Bound的重要性,指出好的假设空间、数据量、算法选择和运气是学习成功的关键因素。
摘要由CSDN通过智能技术生成

引入

上一小节中,“理解为什么机器可以学习——Hoeffding不等式”中,我们介绍了有限假设空间中的概率边界。在这篇文章中,我们将推广至无限假设空间中,进而引入VC理论。

面临待解决的问题

上一节,我们证明了PAC学习的样本复杂度随假设空间对数增长,但是以假设空间的个数|H|来刻画样本复制度存在缺点:

  • 对于|H|很大的情形,会使一个很弱的边界,即出现错误的概率很大
  • 对于无限假设空间的情形无法应用

所以,我们要考虑H的复杂度的另一种度量方式,称为H的Vapnik-Chervonenkis维度(简称VC维),我们用VC(H)代替|H|得到样本复杂度的边界。

打散(shatter)一个数据集合

VC维衡量假设空间复杂度的方法不是用不同假设的数量|H|,而是用给定X中能被H彻底区分的不同实例的数量(举个例子,比如2D空间有两个数据,如果是用感知机模型的话,可以将这两个数据分成两个正例、两个负例、一正一负或一负一正,我们知道在这种情况下,感知机的假设空间是无穷的,但是实际上导致最终分类的只有4中不同结果)。

Dichotomy,一分为二的划分

想象我们现在有一个假设集合,这个假设集合将N个点的数据分成正例和负例的不同组合(用圈和叉来表示),于是我们就将假设将数据分成不同正负例的组合称为Dichotomy。Hypotheses和Dichotomies的区别如下图所示,Dichotomies最多有2的N次方种可能。于是,我们就打算用Dichotomies的有效数量来取代有限假设空间的Hoeffding不等式中的M。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值